Skip to content ↓

Topic

Disease

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 226 news clips related to this topic.
Show:

Genetic Engineering & Biotechnology News

Researchers from MIT and Harvard Medical School produced two new papers about the impact of a specific cytokine, or immune molecule, known as IL-17, on the brain when you’re sick. “Cytokines are well-known players in the immune response, helping to control inflammation and coordinate the responses of other immune cells,” reports Genetic Engineering & Biotechnology News. “A growing body of evidence suggests that some cytokines also influence the brain, leading to behavioral changes during illness.”

Le Figaro

A team of researchers from MIT and Harvard Medical School are “deciphering the action of small immune system proteins in the brain and showing how, by exciting or inhibiting populations of neurons, they modulate anxiety and social behaviors,” writes Soline Roy of Le Figaro.  

GBH

Newsha Ghaeli PhD '17, co-founder of BioBot Analytics, speaks with GBH Morning Edition host Mark Herz about the company’s role in helping public health officials during the Covid-19 pandemic. “When we started the company, the vision was really that wastewater is a source of very important source on human health,” says Ghaeli. 

STAT

Researchers from MIT have “identified genes that the tuberculous bacteria rely on to survive and spread,” reports Allison DeAngelis for STAT. “Until now, very little was known about how tuberculous bacteria survived temperature changes, oxygen levels, humidity, and other environmental factors during the journey from one person’s lungs to another’s,” explains DeAngelis. 

Forbes

Prof. Ed Boyden and Prof. Li-Huei Tsai have “found that if gamma waves through non-invasive stimulation, were put back into baseline frequency, it could slow down the process in certain brain diseases such as Alzheimer’s,” reports Hansa Bhargava for Forbes

The New York Times

Prof. Katharina Ribbeck speaks with New York Times reporter Nina Agrawal about her research studying the health and medical benefits of mucus. “Ribbeck’s research has shown that the sugars on mucins can effectively switch off mechanisms that the bacteria involved in strep throat or cholera, for example, or fungus in a yeast infection, use to go from innocuous to harmful,” explains Agrawal. 

The New Yorker

New Yorker reporter Dhruv Khullar spotlights how researchers from across MIT are using AI to advance drug development. Khullar highlights the MIT Jameel Clinic, the Broad Institute and various faculty members for their efforts in bridging the gap between AI and drug research. “With AI, we’re getting that much more efficient at finding molecules—and in some cases creating them,” says Prof. James Collins. “The cost of the search is going down. Now we really don’t have an excuse.”

USA Today

Sonia Vallabh and Eric Minikel, senior group leaders from the Broad Institute have created a gene-editing tool to combat prion diseases, reports Karen Weintraub for USA Today. The approach “should also work against diseases such as Huntington's, Parkinson's, ALS and even Alzheimer's, which result from the accumulation of toxic proteins,” Weintraub writes.

HealthDay News

MIT scientists have shown a simple paper-strip test can detect the flu and identify the specific strain, which could prove useful in improving outbreak response and infection care, writes Dennis Thompson for HealthDay. Jon Arizti-Sanz PhD ’24 says “being able to tease apart what strain or subtype of influenza is infecting a patient has repercussions both for treating them and public health interventions.” 

The Boston Globe

Writing for the Boston Globe, graduate student Sophie Hartley spotlights researchers and arborists battling beech leaf disease  a highly infectious disease caused by microscopic roundworms that “can disrupt a tree’s ability to photosynthesize and therefore survive." “Over the past decade, federal, state, and private agencies have shown up en masse to learn all they can about beech leaf disease, resulting in an extensive body of knowledge to inform policy,” explains Hartley. “By matching the worms’ seemingly unstoppable push with equally relentless research, experimentation, and community support, the hope is that all is not lost. Not yet.” 

HealthDay News

MIT researchers have developed microneedle patches that are capable of restoring hair growth in alopecia areata patients, reports Ernie Mundell for HealthDay. The team’s approach includes a, “patch containing myriad microneedles that is applied to the scalp,” writes Mundell. “It releases drugs to reset the immune system so it stops attacking follicles.” 

NECN

MIT researchers have discovered a protein found in human sweat that holds antimicrobial properties and can “inhibit the growth of the bacteria that causes Lyme disease,” reports Matt Fortin for NENC. The team believes this “type of protein could be put into a topical cream to make something called ‘Lyme Block’ – like sunblock, but for preventing Lyme.”  "Ideally what we would love to do is give people more control over their own risk," says Principal Research Scientist Michal Tal. "And really try to develop this into a possible preventative that you could put on repellant or sunblock to protect against other elements of the outdoors that you could also protect yourself against Lyme."

Scientific American

Prof. Katharina Ribbeck speaks with Christopher Intagliata of Scientific American’s “Science Quickly” podcast about her research exploring how mucus can treat and prevent disease. “The basic building blocks of mucus that give mucus its gooey nature are these threadlike molecules—they look like tiny bottlebrushes—that display lots and lots of sugar molecules on their backbone,” explains Ribbeck. “And these sugar molecules—we call them glycans—interact with molecules from the immune system and microbes directly. And the exact configuration and density of these sugar molecules is really important for health.”

Salon

Researchers from MIT and elsewhere have isolated a “protein in human sweat that protects against Lyme disease,” reports Matthew Rozsa for Salon. The researchers believe that if “properly harnessed the protein could form the basis of skin creams that either prevent the disease or treat especially persistent infections,” writes Rosza.

Boston Herald

Researchers from MIT and elsewhere are investigating the “pathways, risk factors, and molecules” involved in the development of colorectal cancer, reports Rick Sobey for The Boston Herald. “The research team has uncovered contributing causes to this rise in early-onset cases, including: overweight/obesity, physical inactivity, poor diet, and alterations in the gut microbiome,” writes Sobey.