Skip to content ↓

Why visual stimulation may work against Alzheimer’s

New findings help explain the surprising discovery that exposure to flickering light reduces amyloid plaques in mice.
Press Inquiries

Press Contact:

Sarah McDonnell
Phone: 617-253-8923
Fax: 617-258-8762
MIT News Office

Media Download

At left is the brain of a mouse genetically programmed to develop Alzheimer’s disease. At right, the brain of a mouse programmed to develop the disease, but treated with noninvasive visual stimulation, shows much less neurodegeneration.
Download Image
Caption: At left is the brain of a mouse genetically programmed to develop Alzheimer’s disease. At right, the brain of a mouse programmed to develop the disease, but treated with noninvasive visual stimulation, shows much less neurodegeneration.
Credits: Image: Chinnakkaruppan Adaikkan

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license. You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Close
At left is the brain of a mouse genetically programmed to develop Alzheimer’s disease. At right, the brain of a mouse programmed to develop the disease, but treated with noninvasive visual stimulation, shows much less neurodegeneration.
Caption:
At left is the brain of a mouse genetically programmed to develop Alzheimer’s disease. At right, the brain of a mouse programmed to develop the disease, but treated with noninvasive visual stimulation, shows much less neurodegeneration.
Credits:
Image: Chinnakkaruppan Adaikkan

Several years ago, MIT neuroscientists showed that they could dramatically reduce the amyloid plaques seen in mice with Alzheimer’s disease simply by exposing the animals to light flickering at a specific frequency.

In a new study, the researchers have found that this treatment has widespread effects at the cellular level, and it helps not just neurons but also immune cells called microglia. Overall, these effects reduce inflammation, enhance synaptic function, and protect against cell death, in mice that are genetically programmed to develop Alzheimer’s disease.

“It seems that neurodegeneration is largely prevented,” says Li-Huei Tsai, the director of MIT’s Picower Institute for Learning and Memory and the senior author of the study.

The researchers also found that the flickering light boosted cognitive function in the mice, which performed much better on tests of spatial memory than untreated mice did. The treatment also produced beneficial effects on spatial memory in older, healthy mice.

Chinnakkaruppan Adaikkan, an MIT postdoc, is the lead author of the study, which appears online in Neuron on May 7.

Beneficial brain waves

Tsai’s original study on the effects of flickering light showed that visual stimulation at a frequency of 40 hertz (cycles per second) induces brain waves known as gamma oscillations in the visual cortex. These brain waves are believed to contribute to normal brain functions such as attention and memory, and previous studies have suggested that they are impaired in Alzheimer’s patients.

Tsai and her colleagues later found that combining the flickering light with sound stimuli — 40-hertz tones — reduced plaques even further and also had farther-reaching effects, extending to the hippocampus and parts of the prefrontal cortex. The researchers have also found cognitive benefits from both the light- and sound-induced gamma oscillations. 

In their new study, the researchers wanted to delve deeper into how these beneficial effects arise. They focused on two different strains of mice that are genetically programmed to develop Alzheimer’s symptoms. One, known as Tau P301S, has a mutated version of the Tau protein, which forms neurofibrillary tangles like those seen in Alzheimer’s patients. The other, known as CK-p25, can be induced to produce a protein called p25, which causes severe neurodegeneration. Both of these models show much greater neuron loss than the model they used for the original light flickering study, Tsai says.

The researchers found that visual stimulation, given one hour a day for three to six weeks, had dramatic effects on neuron degeneration. They started the treatments shortly before degeneration would have been expected to begin, in both types of Alzheimer’s models. After three weeks of treatment, Tau P301S mice showed no neuronal degeneration, while the untreated Tau P301S mice had lost 15 to 20 percent of their neurons. Neurodegeneration was also prevented in the CK-p25 mice, which were treated for six weeks.

“I have been working with p25 protein for over 20 years, and I know this is a very neurotoxic protein. We found that the p25 transgene expression levels are exactly the same in treated and untreated mice, but there is no neurodegeneration in the treated mice,” Tsai says. “I haven’t seen anything like that. It’s very shocking.”

The researchers also found that the treated mice performed better in a test of spatial memory called the Morris water maze. Intriguingly, they also found that the treatment improved performance in older mice that did not have a predisposition for Alzheimer’s disease, but not young, healthy mice.

Genetic changes

To try to figure out what was happening at a cellular level, the researchers analyzed the changes in gene expression that occurred in treated and untreated mice, in both neurons and microglia — immune cells that are responsible for clearing debris from the brain.

In the neurons of untreated mice, the researchers saw a drop in the expression of genes associated with DNA repair, synaptic function, and a cellular process called vesicle trafficking, which is important for synapses to function correctly. However, the treated mice showed much higher expression of those genes than the untreated mice. The researchers also found higher numbers of synapses in the treated mice, as well as a greater degree of coherence (a measure of brain wave synchrony between different parts of the brain).

In their analysis of microglia, the researchers found that cells in untreated mice turned up their expression of inflammation-promoting genes, but the treated mice showed a striking decrease in those genes, along with a boost of genes associated with motility. This suggests that in the treated mice, microglia may be doing a better job of fighting off inflammation  and clearing out molecules that could lead to the formation of amyloid plaques and neurofibrillary tangles, the researchers say. They also found lower levels of the version of the Tau protein that tends to form tangles.

A key unanswered question, which the researchers are now investigating, is how gamma oscillations trigger all of these protective measures, Tsai says.

“A lot of people have been asking me whether the microglia are the most important cell type in this beneficial effect, but to be honest, we really don’t know,” she says. “After all, oscillations are initiated by neurons, and I still like to think that they are the master regulators. I think the oscillation itself must trigger some intracellular events, right inside neurons, and somehow they are protected.”

The researchers also plan to test the treatment in mice with more advanced symptoms, to see if neuronal degeneration can be reversed after it begins. They have also begun phase 1 clinical trials of light and sound stimulation in human patients.

The research was funded by the National Institutes of Health, the Halis Family Foundation, the JPB Foundation, and the Robert A. and Renee E. Belfer Family Foundation.

Press Mentions

USA Today

USA Today reporter Karen Weintraub spotlights Prof. Li-Huei Tsai’s work studying a potential new approach to treating Alzheimer's disease and “whether certain tones of sound and frequencies of light can help regulate brain waves and help clear our cellular trash, including toxic proteins.” Tsai explains that: “The major difference between this approach and all other approaches is that this approach doesn’t just target one molecule or one pathway or one cell type. This is a holistic approach to take care of the whole system.”

NPR

NPR’s Jon Hamilton spotlights Prof. Li-Huei Tsai’s work developing a noninvasive technique that uses lights and sounds aimed at boosting gamma waves and potentially slowing progression of Alzheimer’s disease. "This is completely noninvasive and could really change the way Alzheimer's disease is treated," Tsai says.

Scientific American

Scientific American reporter Leslie Nemo spotlights postdoctoral fellow Matheus Victor’s photograph of a petri dish full of neurons. Nemo writes that Victor and his colleagues hope the “rudimentary brain tissue will reveal why a new therapy might alleviate Alzheimer’s symptoms.”

The Boston Globe

Boston Globe reporter Corrie Pikul spotlights Prof. Li-Huei Tsai’s work finding that exposure to a specific pattern of rhythmic lights and sound bursts could potentially serve as a non-invasive treatment for Alzheimer’s. “These are really surprising findings,” says Tsai. “We are seeing multiple different cellular responses that are consistent with increased brain health.”

BBC News

Reporting for BBC Future, David Robson spotlights Prof. Li-Huei Tsai’s work developing a new non-invasive treatment that could potentially alleviate symptoms of dementia using a combination of flashing and clicking lights. Robson writes that Tsai’s research “represents a radical new approach to preventing and treating the most common form of dementia.”

Guardian

Guardian reporter Ian Sample writes that Prof. Li-Huei Tsai is leading a clinical trial to see whether flickering lights and low frequency sounds can slow the progression of Alzheimer’s disease. Sample notes that, “the unusual approach to combating Alzheimer’s draws on the ability of light and sound waves to affect electrical activity in the brain.”

Popular Science

Popular Science reporter Nicole Wetsman writes that MIT researchers have found light pulses could potentially be used to help ease the symptoms of Alzheimer’s disease. The researchers found that “light pulses and gamma oscillations protect against neurodegeneration and change the expression of genes involved with inflammation and neuron health in the brains of mice.”

Related Links

Related Topics

Related Articles

More MIT News