Skip to content ↓

Topic

Viruses

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 30 news clips related to this topic.
Show:

The Washington Post

Writing for The Washington Post, Prof. Kevin Esvelt argues that research aimed at creating pandemic-causing viruses should be considered a matter of international security. “Natural pandemics may be inevitable. Synthetic ones, constructed with full knowledge of society’s vulnerabilities, are not,” writes Esvelt. “Let’s not learn to make pandemics until we can reliably defend against them.”

Nature

Nature reporter Eric Bender spotlights MIT startup Kytopen, which has developed a microfluidic platform to create induced pluripotent stem (iPS) cells and other forms of cell therapy. We want to do minimally invasive surgery,” says Kytopen co-founder Prof. Cullen Buie.

The Wall Street Journal

Wall Street Journal reporter Sara Castellanos spotlights Prof. Markus Buehler’s work combining virtual reality with sound waves to help detect subtle changes in molecular motions. Castellanos notes that Buehler and his team recently found, “coronaviruses can be more lethal or infectious depending on the vibrations within the spike proteins that are found on the surface of the virus.”

ABC News

Prof. Lydia Bourouiba speaks with ABC News about how schools can use ventilation and masks to help reduce the spread of Covid-19. “If we're not wearing a mask, that contamination is building up, particularly when we're in a classroom for hours," says Bourouiba. "But there are simple measures when we bring in fresh air from the outside that are very effective."

STAT

Writing for STAT, Prof. Susan Silbey and Prof. Ruthanne Huising of Emlyon Business School make the case that to prevent lab leaks, there should be a greater emphasis placed on biosafety. “The global research community does not need more rules, more layers of oversight, and more intermediary actors,” they write. “What it needs is more attention and respect to already known biosafety measures and techniques.”

WHDH 7

WHDH spotlights how MIT and Harvard researchers are creating wearable biosensors that could be used to detect Covid-19 in a person’s breath. “At the end of the day, what we wanted to do was basically to blend both to potentially produce a product that was more easily incentivized patients to both wear a mask and to get tested,” explains Luis Soenksen of the Abdul Latif Jameel Clinic for Machine Learning in Health.

CBS Boston

A new sensor developed by MIT and Harvard researchers can be embedded in a face mask and used to alert the wearer if they have Covid-19, reports CBS Boston. “Small disposable sensors can diagnose the wearer of the mask within 90 minutes," reports CBS Boston. "The technology has been used before to detect Ebola and Zika, but now researchers are embedding it into face masks and lab coats as a new method to safeguard health care workers.”

Boston Globe

Researchers from MIT and Harvard have developed a new sensor technology that can be embedded in a face mask to detect whether the wearer has Covid-19, reports Pranshu Verma for The Boston Globe. “We worked hard, sometimes bringing nonbiological equipment home and assembling devices manually,” says Luis Soenksen of the Abdul Latif Jameel Clinic for Machine Learning in Health. “It was definitely different from the usual lab infrastructure we’re used to working under, but everything we did has helped us ensure that the sensors would work in real-world pandemic conditions.”

Fast Company

Researchers from MIT and Harvard have developed a face mask outfitted with sensors that can detect if the wearer has Covid-19, reports Adele Peters for Fast Company. “If testing and sensing at a biological molecular level could be done in a format that can follow people around instead of people having to go to the clinic, maybe you can encourage people to get more testing done,” says Luis Soenksen, a Venture Builder at MIT’s Abdul Latif Jameel Clinic for Machine Learning in Health.

Quartz

MIT researchers are applying machine learning algorithms typically used for natural language processing to identify coronavirus variants, reports Brian Browdie for Quartz. “Besides being able to quantify the potential for mutations to escape, the research may pave the way for vaccines that broaden the body’s defenses against variants or that protect recipients against more than one virus, such as flu and the novel coronavirus, in a single shot,” writes Browdie. 

WBUR

A CRISPR-based diagnostic test for Covid-19 developed by researchers from MIT and the Broad Institute could produce results within an hour, reports Deborah Becker for WBUR. "Using these technologies will really allow for much more rapid testing — down from days to sometimes less than an hour," said McGovern fellow Jonathan Gootenberg. "That would enable a drastic change in how the tracing and handling of the pandemic is done."

WBUR

WBUR’s Carey Goldberg explores how MIT researchers developed a new CRISPR-based research tool that can be used to detect Covid-19. "A lot of things that we try fail," says research scientist Jonathan Gootenberg. "And that’s OK. Because sometimes you find these things that are really, really awesome."

NPR

NPR’s Jason Beaubien speaks with Broad Institute Associate Director Nathan Yozwiak about the current outbreak of the Lassa virus in Nigeria. "What we could be seeing rather than an emerging disease is an emerging diagnosis,” said Yozwiak, explaining that the recent uptick could actually stem from increased awareness and reporting. 

Boston Globe

MIT researchers have discovered a new family of viruses in the ocean that appears to play a key role in ocean ecosystems and could help provide insights on how viruses evolve, reports Marin Finucane for The Boston Globe.  Finucane explains that the findings could also lead to, "a better understanding of human biology.”

NBC Learn

In this “Science of Innovation” segment, NBC Learn explores Prof. Angela Belcher’s work using viruses engineered in her laboratory to form nanoscale wires for tiny batteries. “By harnessing nature’s own processes, Angela Belcher has been able to turn today’s viruses into tomorrow’s batteries.”