Skip to content ↓

Topic

Space

Download RSS feed: News Articles / In the Media / Audio

Displaying 496 - 510 of 697 news clips related to this topic.
Show:

Xinhuanet

A study co-authored by MIT researchers shows that the moon’s magnetic field could have lasted for as long as two billion years, according to Xinhua. “The researchers are planning to analyze more lunar rocks to determine when the dynamo died off completely.”

NBC News

MIT researchers have found that the moon’s magnetic field lasted at least 1 billion years longer than initially thought, reports Charles Q. Choi for NBC News. “Understanding more about the nature of the magnetic field of Earth's moon could shed light on the magnetic fields of distant moons and planets, which could influence their habitability."

Guardian

By examining a lunar rock from the Apollo 15 mission, researchers from MIT and Rutgers University have found that the moon had a magnetic field for at least one billion years longer than initially thought, reports Nicola Davis for The Guardian. The researchers found that the, “lunar dynamo was still going until somewhere between one billion and 2.5bn years ago.”

Boston Globe

Boston Globe reporter Martin Finucane writes that a new study co-authored by MIT researchers provides evidence that the moon’s magnetic field lasted 1 billion years longer than previously thought. “Researchers now believe the moon’s magnetic field existed for a total of at least 2 billion years,” Finucane explains. 

Forbes

Forbes reporter Jim Clash writes that MIT alumnus and retired astronaut Franklin Chang Diaz is developing a plasma engine that could theoretically, “cut time for manned missions to Mars to as little as 39 days versus the eight months it would take using today’s chemical rockets.”

Boston Globe

MIT researchers have developed a laser sensing technique that can decipher the makeup of space debris orbiting around Earth, reports Alex Kingsbury for The Boston Globe. Knowing what material the debris is made of, “will allow for more precise calculations of momentum, velocity, and the danger they may pose to other objects aloft in orbit,” explains Kingsbury.

Science

Writing for Science, Jeffrey Mervis features NASA’s 2017 astronaut candidates, which included three MIT affiliates. Mervis highlights how at MIT, Prof. Warren Hoburg, one of this year’s candidates, was focused on developing an, “unmanned, solar-powered airplane that could fly nonstop around the world.”

Los Angeles Times

LIGO’s third detection of black holes merging solidifies gravitational wave astronomy as an observational science, writes Amina Khan for The Los Angeles Times. Khan explains that scientists are, “moving LIGO’s work from the examination of singular curiosities to demographic studies of the sky’s invisible denizens." 

Popular Science

LIGO scientists have detected a third black hole merger, reports Sophie Bushwick for Popular Science. Bushwick explains that the finding shows that LIGO is, “coming into its own as a black hole telescope: The latest finding proves the existence of a new category of black hole and adds a puzzle piece to the question of how these systems form.”

Boston Globe

LIGO scientists have successfully detected two black holes merging for the third time, reports Eric Moskowitz for The Boston Globe. MIT’s David Shoemaker, LIGO’s spokesperson, explains that researchers can use the information gathered by LIGO to get a, “more complete picture of Einstein’s general relativity and the population of these purely relativistic objects we call black holes.”

New York Times

Writing for The New York Times, Dennis Overbye examines LIGO’s third successful detection of gravitational waves. “We are moving in a substantial way away from novelty towards where we can seriously say we are developing black-hole astronomy,” says David Shoemaker, director of the MIT LIGO Lab and spokesperson for the LIGO Scientific Collaboration. 

CBS News

CBS News reporter William Harwood writes that LIGO scientists have detected the merger of two black holes three billion light years away. David Shoemaker, director of the MIT LIGO Lab and the spokesperson for LIGO, explains that researchers detected, “the merging of black holes roughly 20 and 30 times the mass of our sun.”

USA Today

MIT’s David Shoemaker, spokesperson for the LIGO Scientific Collaboration, speaks with Doyle Rice of USA Today about LIGO’s third successful detection of gravitational waves. “It is remarkable that humans can put together a story, and test it, for such strange and extreme events that took place billions of years ago and billions of light-years distant from us,” explains Shoemaker. 

Reuters

For the third time, researchers from the LIGO Scientific Collaboration have detected gravitational waves produced by the merger of two black holes, reports Irene Klotz for Reuters. “We’re really moving from novelty to a new observational science,” says MIT's David Shoemaker, spokesperson for the LIGO Scientific Collaboration. 

The Wall Street Journal

Wall Street Journal reporter Robert Lee Hotz writes that scientists from the Laser Interferometer Gravitational-Wave Observatory (LIGO) have successfully detected two black holes merging for the third time. MIT’s David Shoemaker, spokesperson for the LIGO Scientific Collaboration, explains that the discovery shows, “we are really moving to a new astronomy of gravitational waves.”