Skip to content ↓

Topic

Space

Download RSS feed: News Articles / In the Media / Audio

Displaying 181 - 195 of 697 news clips related to this topic.
Show:

NBC News

Researchers from MIT and 80 other institutions have captured the first image of the Milky Way’s supermassive black hole, reports Denise Chow for NBC News. The image provides “the first direct visual evidence of ‘the gentle giant’ that lies at the center of our galaxy,” writes Chow.

CBS Boston

Researchers from MIT contributed to the first image of a supermassive black hole at the center of our galaxy, reports CBS Boston. “Black holes don’t emit light, but the image shows the shadow of the black hole surrounded by a bright ring of light, which is bent by the gravity of the black hole,” reports CBS.  

The Boston Globe

An international team of scientists, including MIT researchers, unveiled the first picture of the supermassive black hole at the heart of the Milky Way, reports Martin Finucane for The Boston Globe. “Our collaboration’s remarkable images of Sgr A* and our scientific conclusions were a combined effort that involved not just the handful of us on stages around the world today, but more than 300 people all working together united by our fascination with black holes,” explains research scientist Vincent Fish.

Associated Press

Associated Press reporter Seth Borenstein writes that the international consortium behind the Event Horizon Telescope has imaged the supermassive black hole at the center of the Milky Way. To get the picture, eight synchronized radio telescopes around the world had to coordinate so closely “in a process similar to everyone shaking hands with everyone else in the room,” explained research scientist Vincent Fish.

National Public Radio (NPR)

Researchers from the Event Horizon Telescope team, including MIT scientists, have captured the first image of the black hole at the center of the Milky Way, reports Bill Chappell for NPR. “More than 300 researchers collaborated on the effort to capture the image, compiling information from radio observatories around the world,” reports Chappell. “To obtain the image, scientists used observations from April 2017, when all eight observatories were pointed at the black hole.”

Scientific American

Scientists from MIT and other institutions have developed the largest, most detailed computer model of the universe’s first billion years, which could help shed light on how the early universe evolved, reports Charles Q. Choi for Scientific American. The model, named THESAN, “can track the birth and evolution of hundreds of thousands of galaxies within a cubic volume spanning more than 300 million light-years across.”

Popular Mechanics

Researchers at MIT have developed an automated search tool that can help astronomers identify the echoes emitted by a specific type of black hole, reports Juandre for Popular Mechanics. “The team’s algorithm, which they dubbed the ‘Reverberation Machine,’ pored through data collected by the Neutron Star Interior Composition Explorer, an x-ray telescope mounted to the International Space Station,” writes Juandre. “They identified previously undetected echoes from black hole binary systems in our galaxy.”

New York Times

MIT astronomers have used light echoes from X-ray bursts to try to map the environment around black holes, reports Dennis Overbye for The New York Times. Prof. Erin Kara then worked with education and music experts to transform the X-ray reflections into audible sound. “I just love that we can ‘hear’ the general relativity in these simulations,” said Kara.

CNN

CNN reporter Ashley Strickland writes that MIT astronomers developed an automated search tool and were able to “pin down the locations of eight rare pairings of black holes and the stars orbiting them, thanks to the X-ray echoes they release.”

Inverse

Inverse reporter Charles Q. Choi writes that MIT astronomers have observed what appears to be the most tightly coupled black widow binary yet. "The one thing I know for sure is we really have never seen anything quite like this object,” says postdoctoral fellow Kevin Burdge, “and that there is probably a lot more to learn from it and other similar objects that I am finding right now, and that's what has me so excited about these."

VICE

MIT astronomers have detected what appears to be a black widow binary with the shortest orbital period ever recorded, reports Becky Ferreira for Vice. “It behaves exactly like a black widow in many, many ways,” says postdoctoral fellow Kevin Burdge, “but it also does a few new things that we've never seen before in any known black widow.” 

VICE

Vice reporter Becky Ferreira writes that MIT researchers developed a new system, called the Reverberation Machine, to detect the echoes from eight new echoing black hole binaries. “These echoes offer a rarely seen glimpse into the otherworldly surroundings of stellar-mass black holes, which are about five to 15 times the mass of the Sun,” writes Ferreira.

Gizmodo

MIT researchers have detected eight echoing black hole binaries in the Milky Way and then converted the black hole X-ray emissions into sound waves, reports Isaac Schultz for Gizmodo. The researchers developed a new tool, dubbed the Reverberation Machine, which “combed satellite data from NICER, a telescope aboard the International Space Station that studies X-ray emissions from sources like black holes and neutron stars, including a weird type of emission known as an ‘echo.’”

Popular Science

Researchers from MIT and Arizona State University are working on a mission that “could resolve unanswered questions about ancient planetesimal cores floating in space – and go back in time to study Earth’s own formation,” reports Megan I. Gannon for Popular Science.

NBC News

Ariel Ekblaw, director of MIT’s Space Exploration Initiative, speaks with Denise Chow at NBC News about the increased opportunities in space and satellite research in recent decades. “If you were a Ph.D. student in the prior domain, it could have taken years and you may never have had a chance to actually deploy your research on the International Space Station,” said Ekblaw. “But now, within four to six years, we might do three or four missions to the International Space Station within that time.”