Skip to content ↓

Topic

Singapore-MIT Alliance for Research and Technology (SMART)

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 51 news clips related to this topic.
Show:

NBC Boston

MIT researchers have developed a new filtration material, created from natural substances, that could be used to remove “forever chemicals” like PFAS and heavy metals from drinking water, reports Matt Fortin for NBC Boston. "That's a huge advantage of our system, which is that we are using fully renewable, biodegradable and compatible material to resolve this long-lasting problem," explains postdoc Yilin Zhang. 

Interesting Engineering

MIT researchers have developed a new filtration material capable of removing PFAS and heavy metals from water while possessing “antimicrobial properties that prevent the filters from becoming fouled over time,” reports Sujita Sinha for Interesting Engineering. “By combining silk and cellulose and using a method that aligns the silk molecules into nanofibrils, [the researchers] created a hybrid material with unique properties perfect for water filtration,” explains Sinha. 

The Boston Globe

President Biden has awarded Prof. Emeritus Subra Suresh ScD '81, the former dean of the MIT School of Engineering, the National Medal of Science for his “pioneering research across engineering, physical sciences, and life sciences,” reports Alexa Gagosz for The Boston Globe. Prof. James Fujimoto '79, SM '81, PhD '84, research affiliate Eric Swanson SM '84, and David Huang '85, SM '89, PhD '93 were awarded the National Medal of Technology and Innovation, “the nation’s highest award for technical achievement.”

Financial Times

Writing for the Financial Times, Prof. Carlo Ratti explores how coordination between ride-hailing services can benefit cities by reducing traffic and carbon emissions. “Imagine a world in which, instead of wavering between Uber, Lyft or a regular taxi, we could open a single app that figures out which service is closest and most affordable,” writes Ratti. 

Optics.org

Optics & Photonics News reporter Patricia Daukantas spotlights how a team of researchers from the Singapore-MIT Alliance for Research and Technology (SMART) has uncovered a way to generate long wavelength light using intrinsic defects in semi-conducting materials. “The new method raises the possibility of future CMOS-compatible LEDs that give off the full spectrum of visible light, writes Daukantas, “without the need for phosphors that generate excess heat and shorten the diodes’ lifespan.”

ElectronicsWeekly.com

Researchers from the Singapore-MIT Alliance for Research and Technology (SMART) have found that twisting crystal films can be used to control light emissions from materials, reports Steve Bush for ElectronicsWeekly.com.

Gizmodo

Gizmodo reporter Victoria Song writes that a new study by researchers from the Singapore-MIT Alliance for Research and Technology (SMART) finds that “not only do rideshares increase congestion, but they also made traffic jams longer, led to a significant decline in people taking public transit, and haven’t really impacted car ownership.”

E&T

A new study by researchers from the Singapore-MIT Alliance for Research and Technology (SMART) finds that ride-sharing services can lead to increased congestion, both in intensity and duration, reports E&T. “While mathematical models in prior studies showed that the potential benefit of on-demand shared mobility could be tremendous, our study suggests that translating this potential into actual gains is much more complicated in the real world,” says Prof. Jinhua Zhao.

HealthCare Asia Daily

Singapore-MIT Alliance for Research and Technology (SMART) researchers have developed a new lab-free immune profiling assay that can be used “to better profile aggressive, rapidly changing host immune response in cases of infection, for example COVID-19,” reports HealthCare Asia Daily.

Scientific Inquirer

A new assay developed by researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP), an Interdisciplinary Research Group (IRG) at the Singapore-MIT Alliance for Research and Technology (SMART), can profile the “rapidly changing host immune response in case of infection, in a departure from existing methods that focus on detecting the pathogens themselves,” reports the Scientific Inquirer.

European Pharmaceutical Review

European Pharmaceutical Review reporter Hannah Balfour writes that researchers from the Singapore-MIT Alliance for Research and Technology have developed a new dissolvable gelatin microcarrier that can help enhance cell production. “Innovations in microcarriers will aid in the scalability of certain cell types such as mesenchymal stromal cells for cell-based therapy, including for regenerative medicine applications,” says Associate Provost Krystyn Van Vliet.

Health Europa

Researchers from the Singapore-MIT Alliance for Research and Technology (SMART) Critical Analytics for Manufacturing Personalized Medicine (CAMP) research group have been awarded new research grants aimed at supporting work exploring personalized medicine and cell therapy, reports Health Europa. “In addition to our existing research on our three flagship projects, we hope to develop breakthroughs in manufacturing other cell therapy platforms that will enable better medical treatments and outcomes for society,” says Associate Provost Krystyn Van Vliet.

Tech Explorist

Tech Explorist reporter Amit Malewar writes that researchers from Singapore-MIT Alliance for Research and Technology (SMART) have “demonstrated a new way to manufacture human red blood cells (RBCs) that cuts the culture time by half compared to existing methods.”

Indvstrvs

Writing for Indvstrvs, Prof. Eugene Fitzgerald, CEO and director of the Singapore-MIT Alliance for Research and Technology (SMART), explores new advances in silicon technologies. “With silicon computing saturating, the key to the future is interconnecting with other systems wirelessly and at lower power,” writes Fitzgerald.

SciDevNet

A study by researchers from MIT’s Singapore-MIT Alliance for Research and Technology (SMART) finds antibiotic resistance in some types of bacteria may be reversed using hydrogen sulphide, reports Melanie Sison for SciDevNet. “This is a very exciting discovery because we are the first to show that H2S can, in fact, improve sensitivity to antibiotics and even reverse antibiotic resistance in bacteria that do not naturally produce the agent,” says Wilfried Moreira, a principal investigator at SMART.