Skip to content ↓

Topic

Research

Download RSS feed: News Articles / In the Media / Audio

Displaying 301 - 315 of 5011 news clips related to this topic.
Show:

Associated Press

Associated Press reporter Maria Cheng spotlights a new study by MIT researchers that identifies a “phonetic alphabet” used by whales when communicating. “It doesn’t appear that they have a fixed set of codas,” says graduate student Pratyusha Sharma. “That gives the whales access to a much larger communication system.” 

NPR

Using machine learning, MIT researchers have discovered that sperm whales use “a bigger lexicon of sound patterns” that indicates a far more complex communication style than previously thought, reports Lauren Sommers for NPR. “Our results show there is much more complexity than previously believed and this is challenging the current state of the art or state of beliefs about the animal world," says Prof. Daniela Rus, director of CSAIL. 

New York Times

MIT researchers have discovered that sperm whales use a “much richer set of sounds than previously known, which they call a ‘sperm whale phonetic alphabet,’” reports Carl Zimmer for The New York Times. “The researchers identified 156 different codas, each with distinct combinations of tempo, rhythm, rubato and ornamentation,” Zimmer explains. “This variation is strikingly similar to the way humans combine movements in our lips and tongue to produce a set of phonetic sounds.”

New Scientist

Prof. Giovanni Traverso and colleagues have developed a new ingestible sensor that could be used to help diagnose gastrointestinal conditions, reports Jeremy Hsu for New Scientist. “Eventually, the futuristic device could provide treatments for gut illnesses through electrical stimulation via additional electrodes embedded in the sensor,” Hsu notes.  

Time Magazine

Prof. Linda Griffith and Stuart Orkin '67 were named to this year’s Time 100 Health list, which recognizes innovators leading the way to new health solutions. Griffith, who was honored for her work engineering a uterine organoid to study endometriosis, explains that in the future engineered organoids could be used to find the most effective treatments for patients. “We have all the genetic information and all the information from the patient’s exposure to infections, environmental chemicals, and stress that would cause the tissues to become deranged in some way, all captured in that organoid,” Griffith explains. 

Popular Science

Researchers at MIT and elsewhere have investigated “how several species of parrots interacted when placed on brief video calls with one another,” reports Mack Degeurin for Popular Science. “The results were shocking,” explains Degeurin. “In almost all cases, the birds’ caretakers claim the video calls improved their well-being. Some of the birds even appeared to learn new skills, like foraging or improved flight, after observing other birds doing so.”

Wired

Researchers from MIT and elsewhere have used an AI model to develop a “new approach to finding money laundering on Bitcoin’s blockchain,” reports Andy Greenberg for Wired. “Rather than try to identify cryptocurrency wallets or clusters of addresses associated with criminal entities such as dark-web black markets, thieves, or scammers, the researchers collected patterns of bitcoin transactions that led from one of those known bad actors to a cryptocurrency exchange where dirty crypto might be cashed out,” explains Greenberg. 

Fortune

 A new report by Principal Research Scientist Andrew McAfee explores the “implications of generative AI in economic growth, looking at everything from its possible effects on job skills and wages to how it may transform entire industries to its potential risks and pitfalls,” reports Sheryl Estrada for Fortune.

Forbes

Scientists from MIT and the University of Oxford have discovered that an ancient sequence of rocks found in Isua, Greenland have “a magnetic field strength of at least 15 microteslas or higher compared to the modern magnetic field of 30 microteslas,” reports David Bressan for Forbes. “These results provide the oldest estimate of the strength of Earth’s magnetic field derived from whole rock samples,” writes Bressan.

CBS News

Prof. Earl K. Miller speaks with CBS News host Susan Spencer about  multitasking, fear of laziness, and the importance of downtime. “A lot of times some of your best thoughts come to you when your conscious mind is out of the way, when you allow the unconscious thoughts to bubble up,” says Miller. “And sometimes it’s good to be lazy – not lazy, but to tune out a bit and let these thoughts bubble up.” 

The Independent

MIT researchers have uncovered the “photomolecular effect,” a process “that demonstrates for the first time that water can evaporate with no source of heat using light alone,” reports Anthony Cuthbertson for The Independent. The “discovery could impact everything from climate change calculations to weather forecasts, while also opening up new practical applications for things like energy and clean water production,” writes Cuthbertson.

ShareAmerica

ShareAmerica reporter Lauren Monsen spotlights Prof. Dina Katabi for her work in advancing medicine with artificial intelligence. “Katabi develops AI tools to monitor patients’ breathing patterns, hear rate, sleep quality, and movements,” writes Monsen. “This data informs treatment for patients with diseases such as Parkinson’s, Alzheimer’s, Crohn’s, and ALS (amyotrophic lateral sclerosis), as well as Rett syndrome, a rare neurological disorder.”

New Atlas

Researchers at MIT have discovered that “light in the visible spectrum is enough to knock water molecules loose at the surface where it meets air and send them floating away,” reports Michael Franco for New Atlas. “While the distinction between light-caused evaporation and heat-caused evaporation might not seem like a big one, the researchers say it could not only have a big impact on the way future evaporative projects are executed, but that it could also explain a long-standing discrepancy involving clouds,” writes Franco.

Space.com

MIT researchers have “discovered hitherto unknown space molecule while investigating a relatively nearby region of intense star birth,” reports Robert Lea for Space.com. This discovery “revealed the presence of a complex molecule known as 2-methoxyethanol, which had never been seen before in the natural world, though its properties had been simulated in labs on Earth,” writes Lea.

Space.com

Researchers from MIT and elsewhere have found that a sequence of rocks from the Isua Supracrustal Belt in Greenland contain “an ironclad record of the early Earth’s magnetic field,” reports Keith Cooper for Space.com. “The new results from the Greenland rocks are considered more reliable because, for the first time, they are based on entire iron-bearing rocks (rather than individual mineral crystals) to derive the primordial field strength,” explains Cooper. “Therefore, the sample offers the first solid measure of not only the strength of Earth's ancient magnetic field, but also of the timing of when the magnetic field originally appeared.”