Skip to content ↓

Topic

Planetary science

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 232 news clips related to this topic.
Show:

Space.com

Researchers from MIT and elsewhere have found that a sequence of rocks from the Isua Supracrustal Belt in Greenland contain “an ironclad record of the early Earth’s magnetic field,” reports Keith Cooper for Space.com. “The new results from the Greenland rocks are considered more reliable because, for the first time, they are based on entire iron-bearing rocks (rather than individual mineral crystals) to derive the primordial field strength,” explains Cooper. “Therefore, the sample offers the first solid measure of not only the strength of Earth's ancient magnetic field, but also of the timing of when the magnetic field originally appeared.”

Forbes

Forbes contributor Jamie Carter spotlights a new study co-authored by MIT scientists that suggests, “the absence of carbon dioxide in a rocky planet’s atmosphere—relative to others in the same star system—may indicate the presence of liquid water on the planet’s surface.”

Gizmodo

Gizmodo reporter George Dvorsky spotlights the Venus Life Finder mission, developed by researchers from MIT and Rocket Lab, which will be launching no earlier than December 2024. “The mission will send a small probe, equipped with a single science instrument, to analyze organic molecules and potential signs of life in the Venusian atmosphere,” writes Dvorsky.

The Washington Post

Prof. Sara Seager and her colleagues have discovered “a six-pack of planets, formed at least 4 billion years ago,” that orbit a nearby sun-like star named HD110067, reports Joel Achenbach for The Washington Post. “Occasionally, nature reveals an absolute gem,” says Seager. “HD 110067 is an immediate astronomical Rosetta stone – offering a key system to help unlock some mysteries of planet formation and evolution.”

Forbes

MIT researchers are leading three missions over the next decade to characterize Venus’ atmosphere for habitability, reports Bruce Dorminey for Forbes. “Understanding Venus is key to understanding exo-earths,” writes Dorminey.

USA Today

USA Today reporter Zoe Wells spotlights the Mars MOXIE device developed by MIT researchers, which “has already made 122 grams of oxygen, comparable to 10 hours of breathable air for a small dog. MOXIE produced 12 grams of oxygen per hour at 98% purity, which exceeded NASA's original expectations.”

The Boston Globe

MIT researchers have developed a new satellite observation technique that can gauge how fast rivers flowed on Mars billions of years ago and how fast they currently flow on Titan, Saturn’s largest moon, reports Talia Lissauer for The Boston Globe. “We can use these other worlds to help us understand what keeps planetary climate stable, or in some cases, what allows planetary climate to change really drastically over time like on Mars,” says Prof. Taylor Perron.

Forbes

Researchers from MIT have developed a new satellite observation technique that can help gauge the strength of ancient rivers on Mars and active liquid methane rivers on Titan, Saturn’s largest moon, reports Jamie Carter for Forbes. “What’s exciting about Titan is that it’s active, and on Mars, it gives us a time machine, to take the rivers that are dead now and get a sense of what they were like when they were actively flowing,” says Prof. Taylor Perron. “With this technique, we have a method to make real predictions for a place where we won’t get more data for a long time.”

Gizmodo

Using a new satellite observation technique, researchers from MIT and elsewhere have determined the flow of dried-up rivers on Mars and currently active liquid methane rivers on Titan, Saturn’s largest moon. “Both kinds are of scientific interest because they could reveal the role rivers play in shaping the worlds’ environments,” reports Isaac Schultz for Gizmodo.

Al Jazeera America

Al Jazeera spotlights a study co-authored by postdoctoral associate Qian Li that finds that rapidly melting Antarctic ice is slowing down the flow of water through the world’s oceans and “could have a disastrous effect on global climate.”

Smithsonian Magazine

MIT scientists have uncovered evidence that wildfire smoke particles can lead to chemical reactions in the atmosphere that erode the ozone layer, reports Margaret Osborne for Smithsonian Magazine. “From a scientific point of view, it’s very exciting to see this brand new effect,” says Solomon. “From a planetary point of view… it would be just tragic to have mankind screw up solving the ozone hole by deciding that we’re going to [allow] a lot more of these fires if we don’t mitigate climate change.”

Tech Briefs

Postdoc Saverio Cambioni speaks with Andrew Corselli of Tech Briefs about NASA’s DART mission, which was aimed at testing a method to protect Earth in case of an asteroid impact threat. “DART showed that it is technologically possible to intercept and impact a sub-kilometer asteroid, with limited prior knowledge of its shape and surface properties,” Cambioni explains. 

The Guardian

Researchers from MIT have found that wildfire smoke can activate chlorine-containing molecules that destroy the ozone layer, writes Donna Lu for The Guardian. “The question in my mind is: is the man-made chlorine going to get … diluted and destroyed out of the atmosphere faster than global climate change is going to increase the frequency and intensity of this kind of fire?” says Prof. Susan Solomon. “I think it’s going to be a race.”

Axios

Axios reporter Jacob Knutson highlights a new study by MIT researchers that finds the smoke released by major wildfires likely reactive chlorine-containing molecules in the atmosphere, delaying the recovery of the hole in the ozone layer. The researchers developed a model that found smoke released by Australian wildfires “chemically depleted between 3% to 5% of the total ozone column in the Southern Hemisphere mid-latitudes in June and July of 2020.”

New Scientist

New Scientist reporter James Dinneen writes that a new study by MIT researchers finds the smoke from Australian wildfires “may have enabled hydrochloric acid to dissolve at higher temperatures, generating more of the reactive chlorine molecules that destroy ozone.” Research scientist Kane Stone explains that “satellite observations showed chemistry that has never been seen before.”