Skip to content ↓

Topic

NASA

Download RSS feed: News Articles / In the Media / Audio

Displaying 121 - 135 of 467 news clips related to this topic.
Show:

WCVB

Prof. Robert Simcoe and his team will receive 100 hours with the new James Webb Space Telescope to look at some of the first stars and galaxies to form after the Big Bang, reports David Bienick for WCVB. “I’m tremendously excited,” says Simcoe. “We have been preparing for this moment since 2016, knowing that we were going to have time and starting to prepare our observations, and waiting for the telescope to be ready.”

Fast Company

Ariel Ekblaw, director of the Space Exploration Initiative and founder of the Aurelia Institute, speaks with Fast Company reporter Rachael Zisk about accessibility needs for human spaceflight and the next generation of space stations. “The goal of democratizing access to space is to allow more people around the world to see themselves in that future,” says Ekblaw. 

New Scientist

MIT researchers have created Thesan, the most detailed model of the early universe to date, reports New Scientist. “Thesan shows how radiation shaped the universe from 400,000 to 1 billion years after the Big Bang,” writes New Scientist.

Forbes

Astronomers have identified two Earth-sized exoplanets orbiting a red dwarf star 33 light years away, reports Jamie Carter for Forbes. “Both planets in this system are each considered among the best targets for atmospheric study because of the brightness of their star,” explains postdoc Michelle Kunimoto.

TechCrunch

TechCrunch reporter Brian Heater spotlights multiple MIT research projects, including MIT Space Exploration Initiative’s TESSERAE, CSAIL’s Robocraft and the recent development of miniature flying robotic drones.

The Verge

Associate Group Leader at the Lincoln Laboratory, William (Bill) Blackwell is the principal investigator for NASA’s TROPICS mission, which is preparing to launch small satellites into space to help better track the development of tropical storms, reports Justine Calma for The Verge. “With more frequent observations from these satellites, scientists hope to better understand how tropical storms grow and intensify,” writes Calma.

The Washington Post

William E. Stoney Jr. ’49, MS ’62, an aeronautical engineer who made great contributions in developing early rockets during NASA’s space race and lead engineering on the Apollo program died at the age of 96 on May 28, 2022, reports Emily Langer for The Washington Post. Stoney “served in top engineering roles during the Apollo program, whose signal accomplishment was the moon landing by astronaut Neil Armstrong in 1969,” writes Langer. “That year, Mr. Stoney received the NASA Exceptional Service Medal for his work on the Apollo mission.”

Gizmodo

Gizmodo reporter Passant Rabie writes that researchers from MIT Lincoln Laboratory developed a tiny gold-coated satellite called the TeraByte InfraRed Delivery (TBIRD) system with the goal of beaming “down data at the fastest rate ever achieved by space lasers.”

Scientific American

Scientists from MIT and other institutions have developed the largest, most detailed computer model of the universe’s first billion years, which could help shed light on how the early universe evolved, reports Charles Q. Choi for Scientific American. The model, named THESAN, “can track the birth and evolution of hundreds of thousands of galaxies within a cubic volume spanning more than 300 million light-years across.”

Popular Mechanics

Researchers at MIT have developed an automated search tool that can help astronomers identify the echoes emitted by a specific type of black hole, reports Juandre for Popular Mechanics. “The team’s algorithm, which they dubbed the ‘Reverberation Machine,’ pored through data collected by the Neutron Star Interior Composition Explorer, an x-ray telescope mounted to the International Space Station,” writes Juandre. “They identified previously undetected echoes from black hole binary systems in our galaxy.”

New York Times

MIT astronomers have used light echoes from X-ray bursts to try to map the environment around black holes, reports Dennis Overbye for The New York Times. Prof. Erin Kara then worked with education and music experts to transform the X-ray reflections into audible sound. “I just love that we can ‘hear’ the general relativity in these simulations,” said Kara.

CNN

CNN reporter Ashley Strickland writes that MIT astronomers developed an automated search tool and were able to “pin down the locations of eight rare pairings of black holes and the stars orbiting them, thanks to the X-ray echoes they release.”

VICE

Vice reporter Becky Ferreira writes that MIT researchers developed a new system, called the Reverberation Machine, to detect the echoes from eight new echoing black hole binaries. “These echoes offer a rarely seen glimpse into the otherworldly surroundings of stellar-mass black holes, which are about five to 15 times the mass of the Sun,” writes Ferreira.

Gizmodo

MIT researchers have detected eight echoing black hole binaries in the Milky Way and then converted the black hole X-ray emissions into sound waves, reports Isaac Schultz for Gizmodo. The researchers developed a new tool, dubbed the Reverberation Machine, which “combed satellite data from NICER, a telescope aboard the International Space Station that studies X-ray emissions from sources like black holes and neutron stars, including a weird type of emission known as an ‘echo.’”

Popular Science

Researchers from MIT and Arizona State University are working on a mission that “could resolve unanswered questions about ancient planetesimal cores floating in space – and go back in time to study Earth’s own formation,” reports Megan I. Gannon for Popular Science.