Skip to content ↓

Topic

McGovern Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 177 news clips related to this topic.
Show:

Forbes

Forbes contributor Michael T. Nietzel spotlights the newest cohort of Rhodes Scholars, which includes Yiming Chen '24, Wilhem Hector, Anushka Nair, and David Oluigbo from MIT. Nietzel notes that Oluigbo has “published numerous peer-reviewed articles and conducts research on applying artificial intelligence to complex medical problems and systemic healthcare challenges.” 

Associated Press

Yiming Chen '24, Wilhem Hector, Anushka Nair, and David Oluigbo have been named 2025 Rhodes Scholars, report Brian P. D. Hannon and John Hanna for the Associated Press. Undergraduate student David Oluigbo, one of the four honorees, has “volunteered at a brain research institute and the National Institutes of Health, researching artificial intelligence in health care while also serving as an emergency medical technician,” write Hannon and Hanna.

Nature

Prof. Hugh Herr speaks with Nature reporter Fred Schwaller about his work developing bionic limbs. Schwaller notes that “Herr’s research team is focusing on surgical techniques and implants that improve on the electrodes used in current bionic-limb systems, which either penetrate the peripheral nerves or wrap around them.” Herr explains: “We’re reimagining how limbs should be amputated and bionic limbs constructed.” 

Popular Science

MIT researchers have created a detailed map showing how the human brain processes information while watching movies, reports Laura Baisas for Popular Science. Using data from functional magnetic resonance imaging (fMRI), researchers uncovered 24 different brain networks that are “associated with specific aspects of sensory or cognitive processing,” explains Baisas. 

Scientific American

Prof. Evelina Fedorenko speaks with Scientific American reporter Gary Stix about her research demonstrating that “language and thought are, in fact, distinct entities that the brain processes separately.” Speaking about how large language models could be used to help scientists better understand the neuroscience of how language works, Fedorenko explains that "there are many, many questions that we can now ask that had been totally out of reach: for example, questions about [language] development.”

CNN

Profs. Canan Dagdeviren and Hugh Herr speak with CNN discuss their work aimed at empowering patients and doctors. Inspired by her aunt’s experience with breast cancer, Dagdeviren and her students are developing new wearable devices that could help detect cancer at an earlier stage. Says Herr of his work developing prosthetics that can be controlled by the human nervous system: “There will be a point where technology is so sophisticated that we can actually rebuild limbs after amputation that will be as good and, ultimately, they will be better than intact biological limbs.” Herr adds that in the future he hopes “the conversation will not be about human limitation anymore. It will be about human ability and human expression.”

Politico

Researchers at MIT and elsewhere have found that “patients who used medical cannabis for a year didn’t see any negative effect on their memory, reward processing and impulse control,” report Erin Schumaker, Daniel Payne, Carmen Paun and Ruth Reader for Politico. “The researchers call for further study with more diverse subjects and a more careful examination of whether certain product types or dosages impact cognitive processes,” they explain.

Associated Press

Prof. Nancy Kanwisher has been named a recipient of the 2024 Champalimaud Foundation’s Vision Award, reports the Associated Press. The award highlights the collective work of four researchers who have “driven significant progress in the field of visual neuroscience." 

Gizmodo

MIT scientists have discovered how propofol, a commonly used anesthetic, induces unconsciousness, reports Adam Kovac for Gizmodo. “The new research indicates that [propofol] works by interfering with a brain’s ‘dynamic stability’ – a state where neurons can respond to input, but the brain is able to keep them from getting too excited,” explains Kovac. 

Nature

MIT scientists have created a high-resolution brain map of the neurons that encode the meanings of various words, reports Sara Reardon for Nature. “The results hint that, across individuals, the brain uses the same standard categories to classify words,” Reardon explains, “helping us to turn sound into sense.” 

The Washington Post

A new surgical procedure and neuroprosthetic interface developed by MIT researchers allows people with amputations to control their prosthetic limbs with their brains, “a significant scientific advance that allows for a smoother gait and enhanced ability to navigate obstacles,” reports Lizette Ortega for The Washington Post. “We’re starting to get a glimpse of this glorious future wherein a person can lose a major part of their body, and there’s technology available to reconstruct that aspect of their body to full functionality,” explains Prof. Hugh Herr. 

STAT

Researchers at MIT have developed a novel surgical technique that could “dramatically improve walking for people with below-the-knee amputations and help them better control their prosthetics,” reports Timmy Broderick for STAT. “With our patients, even though their limb is made of titanium and silicone, all these various electromechanical components, the limb feels natural, and it moves naturally, without even conscious thought," explains Prof. Hugh Herr. 

The Economist

Using a new surgical technique, MIT researchers have developed a bionic leg that can be controlled by the body’s own nervous system, reports The Economist. The surgical technique “involved stitching together the ends of two sets of leg muscles in the remaining part of the participants’ legs,” explains The Economist. “Each of these new connections forms a so-called agonist-antagonist myoneural interface, or AMI. This in effect replicates the mechanisms necessary for movement as well as the perception of the limb’s position in space. Traditional amputations, in contrast, create no such pairings.”  

Financial Times

A new surgical approach developed by MIT researchers enables a bionic leg driven by the body’s nervous system to restore a natural walking gait more effectively than other prosthetic limbs, reports Clive Cookson for the Financial Times. “The approach we’re taking is trying to comprehensively connect the brain of the human to the electro-mechanics,” explains Prof. Hugh Herr.  

The Boston Globe

Researchers at MIT and Brigham and Women’s Hospital have created a new surgical technique and neuroprosthetic interface for amputees that allows a natural walking gait driven by the body’s own nervous system, reports Adam Piore for The Boston Globe. “We found a marked improvement in each patient’s ability to walk at normal levels of speed, to maneuver obstacles, as well as to walk up and down steps and slopes," explains Prof. Hugh Herr. “I feel like I have my leg — like my leg hasn’t been amputated,” shares Amy Pietrafitta, a participant in the clinical trial testing the new approach.