Making it easier to verify an AI model’s responses
By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
A new method can train a neural network to sort corrupted data while anticipating next steps. It can make flexible plans for robots, generate high-quality video, and help AI agents navigate digital environments.
Alumni-founded Ambience Healthcare automates routine tasks for clinicians before, during, and after patient visits.
Collaborative multi-university team will pursue new AI-enhanced design tools and high-throughput testing methods for next-generation turbomachinery.
A new study of bubbles on electrode surfaces could help improve the efficiency of electrochemical processes that produce fuels, chemicals, and materials.
Associate Professor Julian Shun develops high-performance algorithms and frameworks for large-scale graph processing.
MIT CSAIL researchers created an AI-powered method for low-discrepancy sampling, which uniformly distributes data points to boost simulation accuracy.
By enabling users to chat with an older version of themselves, Future You is aimed at reducing anxiety and guiding young people to make better choices.
New dataset of “illusory” faces reveals differences between human and algorithmic face detection, links to animal face recognition, and a formula predicting where people most often perceive faces.
A new method called Clio enables robots to quickly map a scene and identify the items they need to complete a given set of tasks.
The program will invite students to investigate new vistas at the intersection of music, computing, and technology.
The technique leverages quantum properties of light to guarantee security while preserving the accuracy of a deep-learning model.
Researchers argue that in health care settings, “responsible use” labels could ensure AI systems are deployed appropriately.
MIT researchers speed up a novel AI-based estimator for medication manufacturing by 60 times.
By analyzing X-ray crystallography data, the model could help researchers develop new materials for many applications, including batteries and magnets.