Skip to content ↓

Topic

Laboratory for Nuclear Science

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 21 news clips related to this topic.
Show:

New Scientist

Research Scientist Josh Bendavid PhD '13 and his colleagues have “produced a new value for the W boson mass,” a "fundamental particle that is crucial for processes like nuclear decay and setting the mass of the Higgs boson,” reports Alex Wilkins for New Scientist. The result is in line with predictions made in the standard model of particle physics. “The standard model survives for the moment,” said Bendavid of the findings. 

PBS

PBS Space Time host Matt O’Dowd highlights research by Prof. David Kaiser and graduate student Elba Alonso-Monsalve delving into the composition of primordial black holes and potentially confirming the existence of color-charged black holes. “It may stand to reason, that colorful black holes were once the most natural thing in the world,” O’Dowd muses. 

Economist

MIT researchers have improved upon the diffusion models used in AI image generation, reports Alok Jha for The Economist. Working with electrically charged particles, the team created “Poisson flow generative models,” which “generate images of equal or better quality than state-of-the-art diffusion models, while being less error-prone and requiring between ten and 20 times fewer computational steps,” Jha explains. 

CNN

Researchers at MIT have discovered the composition of primordial black holes, “potentially discovering an entirely new type of exotic black hole in the process,” reports Jacopo Prisco for CNN. “We were making use of Stephen Hawking’s famous calculations about black holes, especially his important result about the radiation that black holes emit,” says Prof. David Kaiser. “These exotic black holes emerge from trying to address the dark matter problem — they are a byproduct of explaining dark matter.”

New Scientist

Researchers at MIT have “analyzed how primordial black holes with a trait known as color charge could have formed in the soup of particles that composed the early universe,” reports Leah Crane for New Scientist. “They’re not really colors,” explains Prof. David Kaiser. “If we zoomed in with a microscope we wouldn’t see colors with our eyes, but it’s a way of accounting for the fact that nature seems to only allow color-neutral combinations.” 

Gizmodo

Gizmodo reporter Isaac Schultz writes that researchers from MIT, Caltech and elsewhere have found that “quantum systems can imitate wormholes, theorized shortcuts in spacetime, in that the systems allow the instantaneous transit of information between remote locations.” Grad student Alexander Zlokapa explains that: “We performed a kind of quantum teleportation equivalent to a traversable wormhole in the gravity picture. To do this, we had to simplify the quantum system to the smallest example that preserves gravitational characteristics so we could implement it.”

Popular Science

Physicists from MIT and elsewhere have created a small “wormhole” effect between two quantum systems on the same processor and were able to send a signal through it, reports Charlotte Hu for Popular Science. This new model is a “way to study the fundamental problems of the universe in a laboratory setting,” writes Hu. 

VICE

Researchers at MIT and elsewhere have created a holographic wormhole using Google’s Sycamore quantum computer, reports Sarah Wells for Vice. “The researchers created an entangled state (a quantum mechanical phenomena where distant particles can still communicate with each other) between two halves of a quantum computer and sent a message in between,” writes Wells. “This message was scrambled as it entered the system and, through entanglement, unscrambled on the other side.”

The New York Times

A team of researchers, including scientists from MIT, “simulated a pair of black holes in a quantum computer and sent a message between them through a shortcut in space-time called a wormhole,” reports Dennis Overbye for The New York Times. The development is another “step in the effort to understand the relation between gravity, which shapes the universe, and quantum mechanics, which governs the subatomic realm of particles,” writes Overbye.

Diverse Issues in Higher Education

Diverse Issues in Higher Education reporter Lois Elfman spotlights Shirley Ann Jackson '68 PhD '73 for her distinguished professional career in academia, industry, and government. “Sometimes, a window in time opens for you, and if you are prepared to step through then it can create opportunities for you to make a real difference in the world,” says Jackson. “I’ve had that kind of extraordinary set of opportunities. I have always felt it’s important to make a difference and leave and imprint.”

Newsweek

Researchers have placed an upper mass limit on the subatomic particle called neutrino, reports Robert Lea for Newsweek. “The idea of using radioactive decays to measure neutrino masses is as old as the idea of the neutrino itself, says Prof. Joseph Formaggio. “But only now do we have the capabilities to make use of the techniques to extra the neutrino mass with such precision.”

Physics World

Physics World reporter Tim Wogan writes that MIT researchers used machine learning techniques to identify a mysterious “X” particle in the quark–gluon plasma produced by the Large Hadron Collider. “Further studies of the particle could help explain how familiar hadrons such as protons and neutrons formed from the quark–gluon plasma believed to have been present in the early universe,” writes Wogan.

Popular Science

Using machine learning techniques, MIT researchers have detected “X particles” produced by the Large Hadron Collider, reports Rahul Rao for Popular Science. “The results tell us more about an artifact from the very earliest ticks of history, writes Rao. “Quark-gluon plasma filled the universe in the first millionths of a second of its life, before what we recognize as matter—molecules, atoms, or even protons or neutrons—had formed.”

VICE

Scientists have discovered “X-particles” in the aftermath of collisions produced in the Large Hadron Collider, which could shed light on the structure of these elusive particles, reports Becky Ferreira for Vice. “X particles can yield broader insights about the type of environment that existed in those searing and turbulent moments after the Big Bang,” writes Ferreira.

Quanta Magazine

Quanta Magazine reporter Thomas Lewton spotlights Prof. Janet Conrad’s work on MiniBooNE, a neutrino particle detector that was in operation from 2002 until 2019.