Skip to content ↓

Topic

Kavli Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 121 - 135 of 295 news clips related to this topic.
Show:

United Press International (UPI)

UPI reporter Brooks Hays writes that MIT researchers have discovered an extended dark matter halo encircling an ancient dwarf galaxy about 163,000 light years from Earth. “The findings suggest many more of the cosmos' earliest galaxies may have formed within expansive dark matter halos,” writes Hays. 

Mashable

Mashable spotlights how two high school students, who were part of Student Research Mentoring Program (SRMP) at the Harvard-Smithsonian Center for Astrophysics (CfA) and MIT, have discovered four new exoplanets. “Both the students took guidance from mentor Tansu Daylan, a postdoc at the MIT Kavli Institute for Astrophysics and Space Research, and helped the students study and analyze data from the Transiting Exoplanet Survey Satellite (TESS).” 

Physics World

Physics World selected a study by researchers from MIT’s LIGO Lab that shows quantum fluctuations can jiggle objects as large as the mirrors of the LIGO observatory as one of the top 10 breakthroughs of the year. “The research could lead to the improved detection of gravitational waves by LIGO, Virgo and future observatories,” notes Hamish Johnston for Physics World.

Wired

Research scientist Clara Sousa-Silva speaks with Wired reporter Abigail Beall about phosphine, a molecule that she has spent the past decade investigating. “Phosphine is a horrific molecule, it’s foul in every way,” she says. “It’s almost immoral, if a molecule can be.”

USA Today

A team of astronomers, including MIT researchers, have identified fast radio burst emanating from a magnetar in our galaxy, reports Doyle Rice for USA Today. “The radio pulses are the closest ones detected to date, and their proximity has allowed the team to pinpoint their source.”

The Verge

Prof. Kiyoshi Masui speaks with Verge reporter Loren Grush about how astronomers have detected fast radio bursts coming from a magnetar within our own galaxy. “This is the missing link,” Masui says. “Now we’ve seen a fast radio burst coming from a magnetar, so it proves that at least some fraction of fast radio bursts we see in the universe come from magnetars.”

CBS Boston

CBS Boston reporter Juli McDonald spotlights how NASA's ORISIS-Rex spacecraft carried a key imagine instrument, designed and built by students from MIT and Harvard, on its mission to sample the surface of the asteroid Bennu. Prof. Richard Binzel, co-investigator for the mission, explains that, the device was developed to “measure the asteroid in X-ray light, which is part of the process of figuring out what the asteroid is made out of.”

The Boston Globe

When NASA’s OSIRIS-Rex spacecraft touched down on the asteroid Bennu, onboard was the REgolith X-Ray Imaging Spectrometer (REXIS), a device built by students from MIT and Harvard, write Breanne Kovatch and Andrew Stanton for The Boston Globe. “We as scientists feel the drive of curiosity and the thrill of exploration and it’s humbling and satisfying to think that we can share that sense of exploration with the world,” explains Prof. Richard Binzel, a co-investigator for the mission.

Fox News

Fox News reporter Chris Ciaccia writes that a team of astronomers, including MIT researchers, has found an exoplanet that has a 3.14-day orbit. “The ‘pi planet’ known as K2-315b is relatively close to Earth at 186 light-years away,” writes Ciaccia.

Forbes

MIT researchers have discovered an Earth-sized planet, named K2-315b, which is being referred to as the “pi planet” for its 3.14 day orbit, reports Allison Gasparini for Forbes. “Having planets like K2-315b will help us to further understand the diverse planet bodies out there,” says graduate student Prajwal Niraula.

The Guardian

 “At our best, scientists are explorers and what I’ve discovered is that life can change in the blink of an eye,” writes Prof. Sara Seager in an excerpt from her new book, “The Smallest Lights in the Universe” published by The Guardian. “We need to hold on to the glimmers of hope – however small – and to continue to search for what really matters.”

CBS This Morning

Prof. Sara Seager speaks with Holly Williams on CBS This Morning about the discovery of phosphine in the atmosphere of Venus. “Finding phosphine leaves us with two equally crazy ideas,” says Seager. “One is that there is some unknown chemistry, and the other one is that there’s some possibility there might be some kind of life producing phosphine on Venus.”

The Washington Post

Research scientist Clara Sousa-Silva speaks with Washington Post reporters Joel Achenbach and Marisa Iati about her work trying to determine whether phosphine in the clouds of Venus could be a potential indicator of life. “We did our very best to show what else would be causing phosphine in the abundance we found on Venus,” says Sousa-Silva. “And we found nothing. We found nothing close.”

CNN

Writing for CNN, Prof. Sara Seager explores the significance of the paper she co-authored detailing the discovery of phosphine on Venus. “Our finding of phosphine gas now raises Venus as just one more place to take seriously in the search for life beyond Earth,” writes Seager, “maybe not so crazy after all.”

Wired

Wired reporter Sarah Scoles spotlights the work of research scientist Clara Sousa-Silva, known as Dr. Phosphine on Twitter, and her quest to learn more about phosphine. Scoles writes that Sousa-Silva is a “leading expert in this little-characterized molecule. She identified 16.8 billion features across the full spectrum, greatly expanding on the mere thousands anyone knew about before.”