Skip to content ↓

Topic

Kavli Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 106 - 120 of 295 news clips related to this topic.
Show:

CNN

CNN reporter Ashley Strickland writes about how researchers from the CHIME collaboration have announced that they have detected over 500 fast radio bursts (FRBs) using a radio telescope in Canada. "With all these sources, we can really start getting a picture of what FRBs look like as a whole, what astrophysics might be driving these events, and how they can be used to study the universe going forward," explains graduate student Kaitlyn Shin.

Nature

Scientists from the CHIME Collaboration, including MIT researchers, have reported that the radio telescope has detected more than 500 fast radio bursts in its first year of operation, reports Davide Castelvecchi for Nature. The findings suggest that these events come in two distinct types. “I think this really just nails it that there is a difference,” says Prof. Kiyoshi Masui.

The Boston Globe

The CHIME radio telescope has catalogues more than 500 fast radio bursts (FRBs), which could be used to help map the universe, reports Charlie McKenna for The Boston Globe. FRBs are “kind of like lighthouses or sonar pings,” explains graduate student Calvin Leung, “and for the very first time we’ve shown that we can detect them in large enough quantities that you can really use them to make statements like, ‘Oh, the universe is expanding at this rate,’ or ‘This is how much matter there is in the whole universe.’”

Inverse

Inverse reporter Passant Rabie explores how the CHIME radio telescope has identified more than 500 fast radio bursts in its first year of operation, providing clues as to the structure of the universe. “With enough of them, they are going to be the ultimate tool for mapping the universe,” says Prof. Kiyoshi Masui.

Axios

Axios reporter Miriam Kramer writes that a new study co-authored by MIT researchers suggests that all black holes go through a similar cycle when feeding, whether they are big or small. “Black holes are some of the most extreme objects found in our universe,” writes Kramer. “By studying the way they grow, scientists should be able to piece together more about how they work.”

The Boston Globe

Boston Globe reporter Charlie McKenna writes that a new study co-authored by MIT researchers finds that the way black holes evolve as they consume material is the same, no matter their size. “What we’re demonstrating is, if you look at the properties of a supermassive black hole in the cycle, those properties are very much like a stellar-mass black hole,” says research scientist Dheeraj “DJ” Pasham. The findings mean “black holes are simple, and elegant in a sense.”

The Academic Times

Academic Times reporter Monisha Ravisetti writes that a new study by physicists from a number of institutions, including MIT, finds that supermassive black holes devour gas just like their smaller counterparts. “This is demonstrating that, essentially, all black holes behave the same way,” says research scientist Dheeraj “DJ” Pasham. “It doesn’t matter if it’s a 10 solar mass black hole or a 50 million solar mass black hole – they appear to be acting the same way when you throw a ball of gas at it.”

New Scientist

New Scientist reporter Leah Crane writes that researchers from the LIGO and Virgo gravitational wave observatories have potentially detected primordial black holes that formed in the early days of the universe. “When I started this, I was expecting that we would not find any significant level of support for primordial black holes, and instead I got surprised,” says Prof. Salvatore Vitale.

The Boston Globe

Boston Globe reporter Charlie McKenna writes that MIT researchers have used the spin of black holes detected by the LIGO and Virgo detectors to search for dark matter. "In reality, there is a much broader set of theories that predict or relies on the existence of these very ultra-light particles,” says Prof. Salvatore Vitale. “One is dark matter. So they could be dark matter. But they could also solve other open problems in particle physics.”

The Academic Times

A new study by MIT researches finds that some masses of boson particles don’t actually exist, reports Monisha Ravisetti for The Academic Times. “[Bosons] could be dark matter particles, or they could be something that people call axions, which are proposed particles that could solve problems with the magnetic bipoles of particles,” says Prof. Salvatore Vitale. “Because they can be any of these things, that means they could also have an incredibly broad range of masses.”

CNN

Postdoc Tansu Daylan speaks with CNN reporter Ada Wood about his work mentoring two high school students, and their discovery of four new exoplanets. "When it comes to studying by comparison — that is, studying the atmospheres of planets beyond the solar system around sun-like stars — this is probably one of the best targets that we will ever get," says Daylan.

CBS News

Reporting for CBS News, Sophie Lewis spotlights how MIT astronomers have uncovered evidence of what may be one of the earliest incidences of galactic cannibalism in a dwarf galaxy called Tucana II. “The findings suggest that the earliest galaxies in the universe were much more massive than previously believed,” writes Lewis. 

CNN

CNN reporter Ashley Strickland writes that astronomers have identified an extended dark matter halo around Tucana II, an ancient dwarf galaxy. "This probably also means that the earliest galaxies formed in much larger dark matter halos than previously thought," says Prof. Anna Frebel. "We have thought that the first galaxies were the tiniest, wimpiest galaxies. But they actually may have been several times larger than we thought, and not so tiny after all." 

Smithsonian Magazine

Two high school students and their mentor, MIT postdoc Tansu Daylan, have discovered four new exoplanets located about 200 light years from Earth, reports Nora McGreevy for Smithsonian. The students were participating in the Student Research Mentoring Program, which pairs young astronomers with scientists at MIT and Harvard. “[The students] are so good at finding things that may skip your eyes, basically. It’s fun. And I really like the exchange of ideas,” Daylan adds. 

Gizmodo

Astronomers have uncovered evidence of an extended dark matter halo around an ancient galaxy located about 163,000 light years from Earth, reports Isaac Schultz for Gizmodo. “We know [dark matter] is there because in order for galaxies to remain bound, there must be more matter than what we see visibly, from starlight,” explains graduate student Anirudh Chiti. “That led to the hypothesis of dark matter existing as an ingredient that holds galaxies together.”