Skip to content ↓

Topic

Genetics

Download RSS feed: News Articles / In the Media / Audio

Displaying 106 - 120 of 136 news clips related to this topic.
Show:

Associated Press

Researchers from MIT and Harvard have discovered how the key gene linked to obesity makes people fat, reports the Associated Press. The study revealed that “a faulty version of the gene causes energy from food to be stored as fat rather than burned.”

Boston Globe

Boston Globe reporter Kevin Hartnett writes that MIT researchers have shown it is impossible to create a faster version of the “edit distance” algorithm, which is used to compare the genomes of different species. Hartnett writes that the finding “has been greeted with something like relief among computer scientists.”

Boston Globe

Kathleen McKenna of The Boston Globe writes that Professor Alexander Rich, whose research confirmed DNA’s double-helix structure, died at 90 on April 27. Shuguang Zhang, associate director of the Center for Biomedical Engineering at MIT, said that Rich was “warm, wonderful, and open-minded.”

The Washington Post

Washington Post reporter Martin Weil writes that Prof. Alexander Rich, who was known for his work with molecular biology, passed away on April 27. Rich’s work on hybridization, the pairing of two single strands of DNA or RNA, “is regarded as integral to creating much of modern biotechnology, with applications in diagnostics, forensics, genealogy and gene sequencing.”

New York Times

Prof. Alexander Rich, a noted biophysicist known for his work investigating the structure of DNA and RNA, died on April 27, writes Denise Gellene for The New York Times. “I can think of no one else who has made as many major contributions to all facets of modern molecular biology,” said University of Maryland Prof. Robert C. Gallo.

Forbes

Sarah Hedgecock writes for Forbes about how researchers have made major advances in mapping the human epigenome. Prof. Manolis Kellis explains that the new findings allow researchers to “ go from a static picture of the genome, which is effectively the book of life, to a dynamic picture of a genome.”

CBS News

A team of researchers has published a map of the human epigenome, which could be useful in better understanding how to treat disease, writes Amanda Schupak for CBS News. Prof. Manolis Kellis explains that the findings provide “a reference for studying the molecular basis of human disease, by revealing the control regions that harbor genetic variants associated with different disorders." 

Wired

Marcus Woo writes for Wired about how researchers have published a number of articles providing new information on the human epigenome, which controls which genes get switched on or off. “It is giving us a view of the living, breathing genome in motion, as opposed to a static picture of DNA,” explains Prof. Manolis Kellis. 

The Washington Post

Rachel Feltman of The Washington Post reports that a team led by Professor Manolis Kellis has released the most complete map of the human epigenome to date. “The researchers tied specific cell changes to 58 different biological traits,” writes Feltman. “Sometimes the epigenomic changes of a cell reveal possible clues about disease.”

Boston Globe

Work on mapping the human epigenome, led by Professor Manolis Kellis, could reveal the origins of diseases such as cancer and Alzheimer’s, reports Carolyn Johnson for The Boston Globe. “The research was one major piece of a $240 million National Institutes of Health program that funded 88 grants over 10 years,” Johnson explains. 

Reuters

For the first time, researchers have mapped the epigenome, identifying the switches that can turn individual genes on or off, reports Sharon Beagley for Reuters. Says Prof. Manolis Kellis of the need to understand the epigenome, "The only way you can deliver on the promise of precision medicine is by including the epigenome.” 

New York Times

Researchers have mapped the epigenome, shedding light on how genes are controlled, which could be useful in understanding disease, reports Gina Kolata for The New York Times. “We now have an unprecedented view of the living human genome,” says Prof. Manolis Kellis. 

WBUR

WBUR’s Deborah Becker and Lynn Jolicoeur report on the new MIT-MGH partnership aimed at developing better tools to treat disease. Prof. Arup Chakraborty hopes the collaboration will allow researchers to take risks. “Safe ideas are often not the transformative ones,” he says. 

Scientific American

Brendan Borrell writes for Scientific American about how MIT researchers have engineered the DNA of E.coli to detect and record environmental information. “Building gene circuits requires not only computation and logic, but a way to store that information,” says Prof. Timothy Lu. “DNA provides a very stable form of memory and will allow us to do more complex computing tasks.”

New Scientist

MIT engineers have altered the DNA of E.coli so that it can store memories, reports Colin Barras for New Scientist. The research could “pave the way for cellular biographers that can be inserted into our bodies for the inside scoop on our health,” Barras explains.