Skip to content ↓

Topic

Genetics

Download RSS feed: News Articles / In the Media / Audio

Displaying 91 - 105 of 142 news clips related to this topic.
Show:

Boston Globe

Boston Globe reporter Priyanka Dayal McCluskey writes that researchers from the Broad Institute and IBM are joining forces to examine why many cancer patients become resistant to drugs. The researchers hope this new effort could “help doctors prescribe more effective combinations of drugs for cancer patients.”

Nature

MIT researchers have developed a new system for protecting patient privacy in genomic databases, reports Anna Nowogrodzki for Nature. The system “masks the donor's identity by adding a small amount of noise, or random variation, to the results it returns on a user’s query,” Nowogrodzki explains. 

New York Times

MIT researchers have discovered that a bacterium found in the human mouth can be used to form a new CRISPR gene-editing system that can target RNA, reports Carl Zimmer for The New York Times. The development “may open up a new front in gene engineering, gaining the ability to precisely adjust the proteins in cells, for instance, or to target cancer cells." 

New Scientist

New Scientist reporter Colin Barras writes that MIT researchers have found they can program C2c2, an enzyme found in bacteria, to serve as an RNA-editing tool. Barras writes that the tool “promises to transform our understanding of RNA’s role in our growth and development, and provide a new avenue for treating infectious diseases and cancer.”

New Scientist

Michael Le Page writes for New Scientist that MIT researchers have developed a technique that allows cells to log their activities using the CRISPR gene-editing system. Le Page explains that “such CRISPR-based logging could have a huge range of uses, from smart cells that monitor our health from within, to helping us understand exactly how our bodies develop.”

HuffPost

Huffington Post reporter Carolyn Gregoire writes that MIT spinoff Synlogic is working on reprogramming gut bacteria to act as a living therapeutic. “It’s become really clear that the bacteria living in us and on us affect our bodies in a variety of different ways — in ways that we never imagined,” explains Prof. Timothy Lu. 

New Scientist

MIT researchers have developed a programming language that allows users to design DNA circuits for living cells, writes Andy Coghlan for New Scientist. “We take the same approach as for designing an electronic chip,” says Prof. Christopher Voigt. “Every step in the process is the same – it’s just that instead of mapping the circuit to silicon, it’s mapped to DNA.”

Scientific American

Christopher Intagliata reports for Scientific American about the programming language Prof. Christopher Voigt’s team developed for living cells. Intagliata explains that, “the researchers used the platform to design 60 genetic circuits, which they then ran inside E. coli bacteria. Many of these DNA-based circuits allow bacteria to sense environmental data…and respond in various ways.”

CBC News

Prof. Feng Zhang has been named a recipient of the 2016 Canada Gairdner International Award for his work on the development of the CRISPR gene-editing system, reports CBC News. CRISPR "may prove to be a ‘powerful therapeutic’ for treating human diseases by editing out harmful genetic mutations.”

Globe and Mail

Globe and Mail reporter Ivan Semeniuk spotlights Prof. Feng Zhang and his role in developing the CRISPR-Cas9 gene-editing system, for which he was honored as a recipient of the 2016 Canada Gairdner International award. “CRISPR genome editing technology is a really powerful platform,” says Zhang. “It think it will advance both our ability to understand disease and to develop treatments.”

CBS Boston

A new study by MIT researchers suggests that sea sponges may have been the first animal on Earth, CBS Boston reports. “Based on new genetic tests, researchers can say with confidence that molecules produced by sea sponges have been found in 640 million-year-old rocks.”

BBC News

BBC News reporter Michelle Roberts writes that MIT researchers have fine-tuned the CRISPR-Cas9 genome editing system to make it safer and more accurate. This development is "vital if it [CRISPR] is to be used in humans to cure inherited diseases or inborn errors,” explains Roberts. 

Popular Science

Alexandra Ossola writes for Popular Science that MIT researchers have found a molecule that could make the CRISPR gene-editing technique more precise. The new molecule “makes the editing process easier to control and could create new possibilities for how scientists can edit DNA in the future.”

Boston Globe

Boston Globe reporter Sharon Begley writes that Prof. Feng Zhang has uncovered enzymes that could be used to edit genes more precisely than the proteins currently used by CRISPR. Begley explains that the discovery means that CRISPR could become an “even more powerful tool to reveal the genetic defects underlying diseases and to perhaps repair them.”

Wired

In an article for Wired, Sarah Zhang writes that MIT researchers have identified a new gene-editing system that could prove more effective than current techniques. The new system involves, “a different protein that also edits human DNA, and, in some cases, it may work even better than Cas9,” the protein used for DNA editing.