Skip to content ↓

Topic

Genetics

Download RSS feed: News Articles / In the Media / Audio

Displaying 91 - 105 of 136 news clips related to this topic.
Show:

New Scientist

MIT researchers have developed a programming language that allows users to design DNA circuits for living cells, writes Andy Coghlan for New Scientist. “We take the same approach as for designing an electronic chip,” says Prof. Christopher Voigt. “Every step in the process is the same – it’s just that instead of mapping the circuit to silicon, it’s mapped to DNA.”

Scientific American

Christopher Intagliata reports for Scientific American about the programming language Prof. Christopher Voigt’s team developed for living cells. Intagliata explains that, “the researchers used the platform to design 60 genetic circuits, which they then ran inside E. coli bacteria. Many of these DNA-based circuits allow bacteria to sense environmental data…and respond in various ways.”

CBC News

Prof. Feng Zhang has been named a recipient of the 2016 Canada Gairdner International Award for his work on the development of the CRISPR gene-editing system, reports CBC News. CRISPR "may prove to be a ‘powerful therapeutic’ for treating human diseases by editing out harmful genetic mutations.”

Globe and Mail

Globe and Mail reporter Ivan Semeniuk spotlights Prof. Feng Zhang and his role in developing the CRISPR-Cas9 gene-editing system, for which he was honored as a recipient of the 2016 Canada Gairdner International award. “CRISPR genome editing technology is a really powerful platform,” says Zhang. “It think it will advance both our ability to understand disease and to develop treatments.”

CBS Boston

A new study by MIT researchers suggests that sea sponges may have been the first animal on Earth, CBS Boston reports. “Based on new genetic tests, researchers can say with confidence that molecules produced by sea sponges have been found in 640 million-year-old rocks.”

BBC News

BBC News reporter Michelle Roberts writes that MIT researchers have fine-tuned the CRISPR-Cas9 genome editing system to make it safer and more accurate. This development is "vital if it [CRISPR] is to be used in humans to cure inherited diseases or inborn errors,” explains Roberts. 

Popular Science

Alexandra Ossola writes for Popular Science that MIT researchers have found a molecule that could make the CRISPR gene-editing technique more precise. The new molecule “makes the editing process easier to control and could create new possibilities for how scientists can edit DNA in the future.”

Boston Globe

Boston Globe reporter Sharon Begley writes that Prof. Feng Zhang has uncovered enzymes that could be used to edit genes more precisely than the proteins currently used by CRISPR. Begley explains that the discovery means that CRISPR could become an “even more powerful tool to reveal the genetic defects underlying diseases and to perhaps repair them.”

Wired

In an article for Wired, Sarah Zhang writes that MIT researchers have identified a new gene-editing system that could prove more effective than current techniques. The new system involves, “a different protein that also edits human DNA, and, in some cases, it may work even better than Cas9,” the protein used for DNA editing.

Boston.com

Lloyd Mallinson reports for Boston.com that researchers from MIT and Harvard have discovered the link between obesity and genetics. “The uncovered cellular circuits may allow us to dial a metabolic master switch for both risk and non-risk individuals, as a means to counter environmental, lifestyle, or genetic contributors to obesity,” explains Prof. Manolis Kellis.

BBC News

Prof. Manolis Kellis speaks with BBC reporter Andrew Peach about the discovery of a genetic “master switch” inside fat cells. This switch “decides whether every time we have a meal the excess calories will be stored as fat or whether they will actually be burned away as heat,” explains Kellis.

Guardian

Prof. Manolis Kellis and his colleagues have discovered a metabolic switch linked to obesity, reports Chukwuma Muanya for The Guardian. “Obesity has traditionally been seen as the result of an imbalance between the amount of food we eat and how much we exercise, but this view ignores the contribution of genetics to each individual’s metabolism,” explains Kellis.

HuffPost

“Researchers at MIT and Harvard Medical School have analysed the genetics behind obesity,” writes Natasha Hinde for The Huffington Post. “They discovered a new pathway that controls human metabolism by prompting fat cells to store fat or burn it away.”

New Scientist

Andy Coghlan reports for New Scientist that MIT researchers have found a gene that determines whether fat cells store or burn energy. “You could say we’ve found fat cells’ radiator, and how to turn it up or down,” says Prof. Manolis Kellis.

Time

Alice Park reports for TIME that researchers from MIT and Harvard have identified a pathway that controls how much fat cells burn or store. “What these results say is that we can reprogram all the major fat stores in humans by intervening in this particular pathway,” explains Prof. Manolis Kellis.