Skip to content ↓

Topic

Fluid dynamics

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 63 news clips related to this topic.
Show:

Boston Globe

MIT scientists have developed a new model to analyze movements across the Antarctic Ice Sheet, “a critical step in understanding the potential speed and severity of sea level rise,” writes Ava Berger for The Boston Globe. “The flow of glaciers is really the thing that could lead to catastrophic sea level rise scenarios,” explains Prof. Brent Minchew. The findings take “a really big and important step toward understanding what the future is going to look like.”  

Materials World

Researchers from MIT have developed “sustainable, offshore, hydrodynamic,” artificial reef structures capable of dissipating “more than 95% of an incoming wave’s total energy,” reports Nick Warburton for Materials World. The design “comprises vertical cylinders with four rudder-like slats attached to them, so that water can flow through the structure to generate 'swirling masses of water' or large eddies,” explains Warburton. 

Newsweek

MIT scientists have found that lakes and seas made of methane may have shaped Titan’s shores, writes Jess Thomson for Newsweek. “This discovery could allow astronomers to learn even more about the conditions on Titan,” writes Thomson. “Knowing that waves carved out the coast enables them to predict how fast and strong the winds on the moon are and from which direction they blow.” 

Gizmodo

Gizmodo reporter Passant Rabie spotlights new research by MIT geologists that finds waves of methane on Titan likely eroded and shaped the moon’s coastlines. “If we could stand at the edge of one of Titan’s seas, we might see waves of liquid methane and ethane lapping on the shore and crashing on the coasts during storms,” explains Prof. Taylor Perron. “And they would be capable of eroding the material that the coast is made of.” 

Smithsonian Magazine

Researchers at MIT and elsewhere have found that the sun’s magnetic field “could form much closer to the star’s surface than previously thought,” reports Will Sullivan for Smithsonian Magazine. “The findings could help improve forecasts of solar activity that can affect satellites, power grids and communications systems on Earth—and produce magnificent auroras,” explains Sullivan. 

Tech Briefs

MIT scientists are working to fortify coastlines with “architected” reefs that can also provide habitats for fish and marine life, reports Ed Brown for TechBriefs. “We looked at the structure of these reefs and we found some similarities to what we had been doing in fluid mechanics. That led us to the idea of trying to make artificial reefs that we could architect and build in a very directed way,” says Prof. Michael Triantafyllou.

BBC Science Focus

BBC Science Focus reporter Alex Hughes spotlights a new study by MIT scientists that suggests more heavy snowfall and rain linked to climate change could increasingly contribute to earthquakes worldwide. “The researchers made these conclusions based on how weather patterns in northern Japan have seemingly contributed to a new 'swarm' of earthquakes,” writes Hughes, “a pattern of multiple, ongoing quakes – that is thought to have begun in 2020.”

NBC News

A new study conducted by MIT researchers suggests “heavy snowfall could be a factor in triggering swarms of earthquakes,” reports Evan Bush for NBC News. "Those big snowfall events seem to correlate well with the start of these big earthquake swarms," says Prof. William Frank. "We shouldn’t forget the climate itself can also play a role in changing the stress state at depth where earthquakes are happening." 

The Boston Globe

MIT researchers have developed a new satellite observation technique that can gauge how fast rivers flowed on Mars billions of years ago and how fast they currently flow on Titan, Saturn’s largest moon, reports Talia Lissauer for The Boston Globe. “We can use these other worlds to help us understand what keeps planetary climate stable, or in some cases, what allows planetary climate to change really drastically over time like on Mars,” says Prof. Taylor Perron.

Forbes

Researchers from MIT have developed a new satellite observation technique that can help gauge the strength of ancient rivers on Mars and active liquid methane rivers on Titan, Saturn’s largest moon, reports Jamie Carter for Forbes. “What’s exciting about Titan is that it’s active, and on Mars, it gives us a time machine, to take the rivers that are dead now and get a sense of what they were like when they were actively flowing,” says Prof. Taylor Perron. “With this technique, we have a method to make real predictions for a place where we won’t get more data for a long time.”

Gizmodo

Using a new satellite observation technique, researchers from MIT and elsewhere have determined the flow of dried-up rivers on Mars and currently active liquid methane rivers on Titan, Saturn’s largest moon. “Both kinds are of scientific interest because they could reveal the role rivers play in shaping the worlds’ environments,” reports Isaac Schultz for Gizmodo.

IEEE Spectrum

MIT researchers have developed a new compact, lightweight design for a 1-megawatt electrical motor that “could open the door to electrifying much larger aircraft,” reports Ed Gent for IEEE Spectrum. “The majority of CO2 is produced by twin and single-aisle aircraft which require large amounts of power and onboard energy, thus megawatt-class electrical machines are needed to power commercial airliners,” says Prof. Zoltán Spakovszky. “Realizing such machines at 1 MW is a key stepping stone to larger machines and power levels.”

NPR

Graduate student Crystal Owens speaks with NPR correspondent Miles Parks about her study which sought to find out the perfect ratio for breaking apart an Oreo cookie. “What we actually found was that all of the results were basically the same,” says Owens. “You can’t do it wrong because there’s no way to do it right.”

The Wall Street Journal

Wall Street Journal reporter Aylin Woodward writes about how graduate student Crystal Owens and undergraduate Max Fan set out to solve a cookie conundrum: whether there was a way to twist apart an Oreo and have the filling stick to both wafers. Woodward writes that for Owens, the research “was a fun, easy way to make her regular physics and engineering work more accessible to the general public.”

US News & World Report

Researchers at MIT have found indoor humidity levels can influence the transmission of Covid-19, reports Dennis Thompson for US News & World Report. “We found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes,” explains Prof. Lydia Bourouiba.