Skip to content ↓

Topic

Electronics

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 117 news clips related to this topic.
Show:

Boston.com

Boston.com reporter Ross Cristantiello writes that MIT researchers have developed a new augmented reality headset that combines computer vision and wireless perception to allow users to track and find objects hidden from view. “The system relies on radio frequency signals that can pass through everyday materials like cardboard, plastic, and wood,” Cristantiello explains.

The Daily Beast

MIT engineers have developed an augmented reality headset that uses RFID technology to allow wearers to find objects, reports Tony Ho Tran for The Daily Beast. “The device is intended to assist workers in places like e-commerce warehouses and retail stores to quickly find and identify objects,” writes Tran. “It can also help technicians find tools and items they need to assemble products.” 

Popular Science

An augmented reality headset developed by MIT engineers, called X-AR, uses RFID technology to help users find hidden objects, reports Andrew Paul for Popular Science. “X-AR’s creators were able to guide users with nearly 99 percent accuracy to items scattered throughout a warehouse testing environment,” writes Paul. “When those products were hidden within boxes, the X-AR still even boasted an almost 92 percent accuracy rate.” 

Popular Science

Popular Science reporter Andrew Paul writes that MIT engineers have developed a new chip for smart phones that blocks unwanted signals, which could “greatly reduce production costs, make devices smaller and more efficient, and potentially even improve battery life.” Graduate student Soroush Araei explains that “our research can make your devices work better with fewer dropped calls or poor connections caused by interference from other devices.”

The Economist

MIT researchers devised a new way to arrange LED pixels to create screens with a much higher resolution than is currently possible, reports The Economist. The new technique, which involves stacking micro LEDS, could also be used to make “VR images that appear far more lifelike than today’s.”

Fast Company

MIT researchers have developed paper-thin solar cells that can adhere to nearly any material, reports Elissaveta M. Brandon for Fast Company. “We have a unique opportunity to rethink what solar technology looks like, how it feels, and how we deploy it,” says Prof. Vladimir Bulović.

The Hill

Writing for The Hill, President L. Rafael Reif emphasizes the importance of “enabling universities to undertake the use-inspired research that will seed future innovations.” He adds: “To secure national leadership and prosperity over time, the U.S. needs to be the birthplace of the new ideas that will determine the future — including the future of semiconductor technology, design, and manufacturing.”

The Economist

Research scientist Ryan Hamerly and his team are working to harness “the low power consumption of hybrid optical devices for smart speakers, lightweight drones and even self-driving cars,” reports The Economist

Mashable

MIT researchers have developed an ultra-thin solar panel that can adhere to any surface for access to immediate power, reports Jules Suzdaltsev for Mashable. “These ultra-portable panels can make the difference in remote regions where emergencies require more power,” writes Suzdaltsev.

Boston.com

Researchers at MIT have developed a new ultrathin solar cell that can adhere to different surfaces providing power on the go, reports Clara McCourt for Boston.com. “The new technology surpasses convential solar panels in both size and ability, with 18 times more power per kilogram at one-hundredth the weight,” writes McCourt.

Popular Science

Popular Science reporter Andrew Paul writes that MIT researchers have developed a new ultra-thin solar cell that is one-hundredth the weight of conventional panels and could transform almost any surface into a power generator. The new material could potentially generate, “18 times more power-per-kilogram compared to traditional solar technology,” writes Paul. “Not only that, but its production methods show promising potential for scalability and major manufacturing.”

Physics World

Physics World has named two research advances by MIT researchers to its list of the Top 10 Breakthroughs of the Year. Prof. Gang Chen and his colleagues were selected for their work “showing that cubic boron arsenide is one of the best semiconductors known to science.” Prof. Asegun Henry, grad student Alina LaPotin and their colleagues were nominated for “constructing a thermophotovoltaic (TPV) cell with an efficiency of more than 40%.”

Boston.com

MIT researchers have developed “a programmable wireless device that can control light orders of magnitude more quickly than commercial devices,” reports Susannah Sudborough for Boston.com. “The device, which is called a spatial light modulator (SLM), will have impactful practical uses beyond creating holograms,” writes Sudborough.

Scientific American

MIT scientists have developed a miniature antenna that could one day be used to help safely transmit data from within living cells “by resonating with acoustic rather than electromagnetic waves,” reports Andrew Chapman for Scientific American. “A functioning antenna could help scientists power, and communicate with, tiny roving sensors within the cell,” writes Chapman, “helping them better understand these building blocks and perhaps leading to new medical treatments.”

Science

Alexander Sludds, a graduate student in MIT’s Research Lab for Electronics, joins Megan Cantwell on the Science magazine podcast to discuss his team’s new method for processing data on edge devices, which are devices that connect two networks together.