Skip to content ↓

Topic

EAPS

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 347 news clips related to this topic.
Show:

Forbes

Prof. Benjamin Weiss, director of the MIT Paleomagnetism Lab, speaks with Forbes reporter Bruce Dorminey about the use of paleomagnetism to track the geographic origins of stromatolites. Weiss notes that he and his colleagues published a paper examining the magnetization of stromatolites in the Strelley Pool Chert in Australia’s Pilbara region. The team’s measurements show that these stromatolites formed within 8 degrees latitude of the equator, Weiss explains. 

The Boston Globe

MIT researchers have analyzed tiny particles from a distant asteroid and found that a weak magnetic field may have helped form the outer planets in our solar system,  reports Sabrina Lam for The Boston Globe. In the future, the researchers hope to use samples from other celestial bodies to identify magnetic fields in our universe. “An exciting thing that’s probably going to happen in the next few decades,” says Prof. Benjamin Weiss, “is that we’re going to start bringing samples back from comets.”

Forbes

Graduate student Samantha Hasler and her colleagues have gathered new information on Uranus using the Hubble Space Telescope and the New Horizons spacecraft, reports Jamie Carter for Forbes.  "Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing” for future missions, explains Hasler. 

Associated Press

Prof. Kerry Emanuel speaks with Associated Press reporter Terry Spencer about Tampa Bay’s vulnerability to incoming hurricanes. “It’s a huge population,” explains Emanuel. “It’s very exposed, very inexperienced and that’s a losing proposition. I always thought Tampa would be the city to worry about most.” 

The Washington Post

Prof. Kerry Emanuel speaks with Washington Post reporters Sarah Kaplan, Shannon Osaka and Dan Stillman about the future of hurricane forecasting. “This is one thing that scares me, if these things can intensify more rapidly,” says Emanuel. “We’re going to have cases where forecasters go to bed with a tropical storm and wake up with a Category 5 when it’s too late to evacuate people.”

Newsweek

A new study by MIT researchers suggests that “Mars’ missing atmosphere may be locked up in the planet’s clay-rich surface,” reports Tom Howarth for Newsweek. “According to the researchers, ancient water trickling through Mars' rocks could have triggered a series of chemical reactions, converting CO2 into methane and trapping the carbon in clay minerals for billions of years,” explains Howarth.

CNN

Scientists from MIT and elsewhere are using submersible structures to harness the power of ocean waves and make sand accumulate in specific regions to protect islands and potentially grow new ones, reports Amy Gunia for CNN. “With each field experiment, the group says it is advancing its understanding of what materials, configurations, and construction techniques can make sand accumulate in the simplest, most cost-effective, sustainable, long-lasting and scalable way,” explains Gunia. 

The Wall Street Journal

Researchers at MIT and elsewhere have discovered an exoplanet that “is 50% larger than Jupiter and as fluffy as cotton candy,” reports Aylin Woodward for The Wall Street Journal. “Basically, for over 15 years now, the astronomy community has been puzzled by a category of gas giants that are bigger than what they should be given their mass,” explains Prof. Julien de Wit. 

USA Today

MIT scientists have solved a decades old mystery by demonstrating impact vaporization is the primary cause of the moon’s thin atmosphere, reports Eric Lagatta for USA Today.  The findings, “have implications far beyond determining the moon's atmospheric origins,” writes Lagatta. “In fact, it's not unthinkable that similar processes could potentially be taking place at other celestial bodies in the solar system.”

National Geographic

By analyzing isotopes of potassium and rubidium in the lunar soil, Prof. Nicole Nie and her team have demonstrated that micrometeorite impacts are the main cause of the moon’s thin atmosphere, reports Isabel Swafford for National Geographic. “Understanding the space environments of different planetary bodies is essential for planning future missions and exploring the broader context of space weathering,” says Nie.

Newsweek

Newsweek reporter Jess Thomson spotlights, Prof. Nicole Nie’s research uncovering the origins of the moon’s thin atmosphere. “The researchers described how lunar samples from the Apollo missions revealed that meteorites of varying sizes have constantly hit the moon's surface, vaporizing atoms in the soil and kicking them up into the atmosphere,” writes Thomson. “The constant hitting of the moon replenishes any gases lost to space.” 

Reuters

By analyzing lunar soil samples, MIT scientists have found that the moon’s thin atmosphere was created by meteorite impacts over billions of years, reports Will Dunham for Reuters. “Many important questions about the lunar atmosphere remain unanswered,” explains Prof. Nicole Nie. “We are now able to address some of these questions due to advancements in technology.” 

The Guardian

MIT scientists analyzed lunar soil samples and discovered that meteorite impacts likely created the moon’s thin atmosphere, reports Nicola Davis for The Guardian. “Our findings provide a clearer picture of how the moon’s surface and atmosphere interact over long timescales, [and] enhance our understanding of space weathering processes,” explains Prof. Nicole Nie. 

New York Times

In an interview with The New York Times, Prof. Susan Solomon speaks about her latest book “Solvable: How We Healed the Earth, and How We Can Do it Again,” which offers learnings from past environmental fights to affect future change. “People need to have some hope. We imagine that we never solve anything…but it’s really important to go back and look at how much we succeeded in the past and what are the common threads of those successes,” Solomon says.

New York Times

Prof. Kerry Emanuel speaks with New York Times reporter Christopher Kuo about the expectations for the upcoming hurricane season. When discussing Hurricane Beryl, Emanuel says “usually the June and July storms are relatively benign. They don’t get up to full strength, so it’s very rare to have this.”