Skip to content ↓

Topic

Drug delivery

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 152 news clips related to this topic.
Show:

Smithsonian Magazine

MIT researchers have created a robotic pill that can safely penetrate the mucus barrier in the digestive tract to deliver drugs more efficiently, reports Margaret Osborne for Smithsonian Magazine. “The device’s textured surface clears away the mucus, and the rotating motion erodes the compartment with the drug payload, which slowly releases into the digestive tract,” explains Osborne.

New Scientist

New Scientist reporter Alex Wilkins writes that MIT researchers have developed a robotic pill that can propel itself through mucus in the intestines and could enable some injection-only medications to be taken orally. “The pill is 2.5-centimeters long and 1-centimeter wide – about the size of a large multivitamin ­– and encased in a gelatin capsule that dissolves in stomach acid,” writes Wilkins. “The pH in the lower intestine activates the motor, which is powered by a small battery.”

News Medical Life Sciences

Doctoral research specialist Morteza Sarmadi speaks with Emily Henderson from News Medical Life Sciences about his work with Prof. Robert Langer and research scientist Ana Jaklenec in developing microparticles that are able to deliver self-boosting vaccines. “We believe this technique can significantly reduce the need to visit a healthcare provider to receive booster shots, a major challenge in remote areas without sophisticated healthcare resources,” says Sarmadi.

Newsweek

Scientists at MIT are developing a self-boosting vaccine that can provide multiple doses of a vaccine via a single injection, reports Darko Manevski for Newsweek. The technology “could be particularly useful for administering childhood vaccinations in regions where people do not have regular access to medical care,” writes Manevski.

The Economist

MIT scientists are developing self-boosting vaccine technology that could allow people to receive all of their vaccine doses in one shot, reports The Economist. This technology “would be a game-changer, not only for future pandemics but also for vaccination programs in remote regions where it is harder to deliver boosters,” The Economist notes.

STAT

A team of scientists, including researchers at MIT, are attempting to treat gastrointestinal disorders by using a foam that delivers low-levels of carbon monoxide to the body, reports Akila Muthukumar for STAT. “Every therapeutic, including food or water, is toxic when taken at certain levels,” said Prof. Gio Traverso. “It’s important to recognize that when delivered or administered appropriately, things can also have benefits.”

New Scientist

Using techniques from molecular gastronomy, Prof. Giovanni Traverso and his colleagues have created a carbon monoxide foam that may be able to treat gastrointestinal disorders by delivering low-levels of the gas to the body, reports Grace Wade for New Scientist. “I don’t know if there is another foam out there used to deliver therapeutic gases,” says Traverso. “This opens up a whole new way of how we think about therapeutics.”

Gizmodo

Scientists from MIT and Brigham and Women’s Hospital have developed a plant-based gel that can be used to deliver effective doses of antimicrobial drugs around the world, reports Ed Cara for Gizmodo. The gels “can be produced cheaply and combined with edible materials like beeswax to create different textures and viscosity, ranging from something like a protein shake to yogurt,” writes Cara.

CNET

Researchers at MIT worked with colleagues at Brigham and Women’s Hospital to develop a gel that could deliver drugs that typically come in pill form. “The work involved testing gel formulations with trained food tasters who found that the most appealing versions were made from cottonseed oil (neutral flavor) or sesame oil (nutty flavor),” reports Amanda Kooser for CNET.

FiercePharma

FiercePharma’s Nick Paul Taylor writes about a new drug delivery gel developed by researchers at MIT and Brigham and Women’s Hospital. “Our system is an oil-based system gel, which makes it compatible with most drugs,” says visiting scientist Ameya Kirtane. “This enables the formulation of drugs that were not available in semi-solid or liquid dosage forms and allows patients, especially children, to more easily take their medicine.”

Boston.com

MIT researchers have developed a new drug-delivering gel that could make it easier for children and adults to swallow their medicine, reports Gwen Egan for Boston.com. The gel could be made in a variety of different textures and can be stored without refrigeration.

CBS Boston

Researchers from MIT and Brigham and Women’s Hospital have developed a gel that can be mixed into medicine to make it easier to swallow, reports CBS Boston. “The gel is made out of plant-based oils and doesn’t have to be refrigerated,” says CBS Boston.  “The hope is that it can one day be used to help children and adults who have trouble swallowing pills.”

Forbes

Forbes reporter Jack Kelly profiles Institute Prof. Robert Langer, spotlighting his career journey and his passion for helping others. “I traded job security and high pay for doing things I was passionate about,” Langer explains. “Out of over 20 job offers I received upon graduation from college, I chose the lowest paying one by far because I thought by doing so, I could potentially improve the health of patients. I dreamed about doing things that I thought would make the world a better place.”

La Repubblica

Professor Gio Traverso speaks with Irma D'Aria of La Repubblica about his work on a capsule that can deliver drugs orally that typically need to be injected. “This technological innovation could apply to chronic conditions that require regular dosing of drugs, but also to medical situations that require more sporadic interventions,” said Traverso. “Mass administration of an otherwise injectable drug also becomes much easier if it can be administered orally.”

The Wall Street Journal

In an article for The Wall Street Journal about efforts to help repair or prevent cartilage damage before osteoarthritis sets in, Laura Landro spotlights how MIT researchers are developing “ways to get drugs into the cartilage tissue and keep them there. They are using microscopic particles called nanocarriers to deliver IGF-1, an insulin like growth factor, to the tight mesh that holds cartilage in joints.”