Skip to content ↓

Topic

Disease

Download RSS feed: News Articles / In the Media / Audio

Displaying 136 - 150 of 221 news clips related to this topic.
Show:

Boston Globe

Elise Takahama writes for The Boston Globe that MIT researchers have developed a new technique to create “xenoproteins,” manmade proteins that could be used to battle infectious diseases like Ebola. Unlike drugs developed with natural proteins, the xenoproteins, “are more stable, easier to administer, and manufactured more quickly,” Takahama explains.

Scientific American

Assistant Prof. Lydia Bourouiba is highlighted in a documentary series that aims to inspire future generations of women in STEM. Producer Emily Driscoll writes in Scientific American that Bourouiba’s work studying droplets from sneezes and toilet flushes “could mean new designs for hospitals and our understanding of disease transmission.”

CBS News- 60 Minutes

60 Minutes correspondent Bill Whitaker sits down with Prof. Feng Zhang, “a scientist at the center of the CRISPR craze,” to help explain how the gene-editing tool works and its potential. “There are about 6,000 or more diseases that are caused by faulty genes,” says Zhang. “The hope is that we will be able to address most if not all of them.”

United Press International (UPI)

Research published in Science Translational Medicine suggests that inflammation caused by tumor removal surgery may actually encourage the emergence of new tumors. Daniel Uria for UPI reports that the study, led by Prof. Robert Weinberg, identified “perioperative anti-inflammatory treatment” as a way to substantially reduce the likelihood of “early metastatic recurrence in breast cancer patients.”

WBUR

New research from MIT and the Whitehead Institute suggests that “the body’s own mechanism for healing” may cause cancerous cells to spread after breast cancer-related surgeries, reports Karen Weintraub for WBUR CommonHealth. “The post-surgical wound-healing response somehow releases…cells that have already spread to distant sites in the body,” explains Prof. Robert Weinberg, “releasing them from the constraints that have previously prevented them from growing actively.”

Forbes

Synlogic, founded by Prof. Jim Collins and Associate Prof. Tim Lu, is programming probiotic bacteria to treat certain genetic or acquired metabolic disease, reports Robin Seaton Jefferson for Forbes. One product is used for people whose bodies can’t maintain a healthy level of ammonia and “has been specifically engineered to convert the excess ammonia to a harmless metabolite,” explains Seaton Jefferson.

Boston Globe

Research published in Neuron may allow for the development of new treatments for disorders associated with memory loss. “It’s possible that further research on the dentate gyrus-CA3 pathway could lead to ways to restore the synapses to allow memory formation again,” Prof. Yingzi Lin told Elise Takahama for the Boston Globe.

New Scientist

Researchers have found a way to reactivate the gene that causes fragile X syndrome, the most common inherited form of intellectual impairment. “The team used an emerging technique called “epigene-editing”,” writes Alice Klein for New Scientist, which is reversible. “That means any off-target effects could be fixed and wouldn’t be passed to future generations.”

STAT

Originally created by the Zhang Lab in 2017, CRISPR tool SHERLOCK has been improved upon to be three times more sensitive for detecting viruses and infections using an inexpensive test strip. Sharon Begley writes for STAT News, “A paper strip, like in a pregnancy test, is dipped into a sample, and if a line appears, the target molecule was detected — no instruments required.”

The Verge

A gene-editing tool called SHERLOCK, developed in Prof. Feng Zhang’s lab, allows for faster detection of infections and viruses, such as Zika and Dengue fever. “It does this by combining different types of CRISPR enzymes, which are unleashed together to target distinct bits of DNA and RNA, another of the major biological molecules found in all forms of life,” writes Alessandra Potenza for The Verge

Scientific American

Prof. Kevin Esvelt speaks with Scientific American reporter Elie Dolgin about his work applying genetic engineering to eradicate diseases like malaria. Esvelt explains that one day researchers could potentially, “engineer an organism that would confer disease resistance to an entire species. Ideally, we’d want to start small and local, see how well it works, and only then scale up if it’s warranted.”

CBS Boston

CBS Boston spotlights how Portal Instruments, an MIT startup, is bringing a needle-free injector to the market, which could change the way people take medicine. The device, “fires a pressurized spray to penetrate the skin, instead of piercing the skin with traditional needles.”

Scientific American

A new study by MIT researchers provides evidence that antibiotics can change the body’s chemistry and make it more hospitable to bacteria, reports Melinda Wenner Moyer for Scientific American. “We suspect that the strength of this effect will really depend on the type of infection and types of antibiotics used,” explains postdoc Jason Yang. 

STAT

Prof. Timothy Lu speaks with STAT reporter Eric Boodman about his work trying to harness bacteria to treat disease. Lu notes that his lab is also currently working on, “building these genetic circuits for therapeutic applications, but instead of targeting bacteria, we’ve been focused on using human cells.”

Reuters

Using nanotechnology and CRISPR, Prof. Daniel Anderson has turned off a cholesterol-related gene in mouse liver cells, reports Julie Steenhuysen for Reuters.  This new development “could lead to new ways to correct genes that cause high cholesterol and other liver diseases,” Steenhuysen writes.