Skip to content ↓

Topic

Disease

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 221 news clips related to this topic.
Show:

Forbes

Cognito Therapeutics, founded by Prof. Ed Boyden and Prof. Li Huei Tsai, has developed a “specialized headset that delivers 40Hz auditory and visual stimulation” to the brain, which could potentially slow down the cognitive decline and neurodegeneration in Alzheimer’s disease, reports William A. Haseltine for Forbes. Prof. Li-Huei Tsai “and her team speculated that if gamma wave activity is reduced in Alzheimer’s disease, perhaps, artificially stimulating the brain may enhance synchronized firing and restore cognition,” writes Haseltine.

Fortune

Graduate student Sarah Gurev and her colleagues have developed a new AI system named EVEscape that can, “predict alterations likely to occur to viruses as they evolve,” reports Erin Prater for Fortune. Gurev says that with the amount of data the system has amassed, it “can make surprisingly accurate predications.”

Forbes

Cognito Therapeutics, founded by Prof. Ed Boyden and Prof. Li-Huei Tsai, is using a 40 Hzlight-flickering and auditory headset to help slow the progression of Alzheimer’s and restore cognition, reports William A. Haseltine for Forbes. “A recent pilot clinical trial found that this technology is not only safe and tolerable for home use, but also has a positive impact on reducing symptoms associated with age-related neurodegeneration,” writes Haseltine.

The Boston Globe

Michal Caspi Tal, a principal research scientist in the department of biological engineering, speaks with Boston Globe reporter Kay Lazar about her research aimed at better understanding why some people develop chronic illness after infection with Lyme disease and Covid-19. “Long Covid and chronic Lyme share so many features that it’s uncanny,” said Tal. “This is a solvable problem. This is not rocket science. This just needs to be looked at with fresh eyes.”

The Washington Post

Writing for The Washington Post, research affiliate Bina Venkataraman emphasizes that “if biomedical breakthroughs are to benefit the millions of children afflicted with rare diseases, genetic testing of babies needs to expand.” Venkataraman adds: “By screening newborn genomes for currently known genetic diseases, patients and scientists could gain insights that lead to the treatment and prevention of thousands of illnesses that currently lack cures.”

Forbes

Prof. Daniela Rus, director of CSAIL, writes for Forbes about Prof. Dina Katabi’s work using insights from wireless systems to help glean information about patient health. “Incorporating continuous time data collection in healthcare using ambient WiFi detectable by machine learning promises an era where early and accurate diagnosis becomes the norm rather than the exception,” writes Rus.

Forbes

In an article for Forbes, research affiliate John Werner spotlights Prof. Dina Katabi and her work showcasing how AI can boost the capabilities of clinical data. “We are going to collect data, clinical data from patients continuously in their homes, track the symptoms, the evolution of those symptoms, and process this data with machine learning so that we can get insights before problems occur,” says Katabi.

Forbes

Michael Goldberg PhD '08 founded Surge Therapeutics, a company developing a hydrogel immunotherapy treatment aimed at reducing the risk of surgically-removed cancers returning, reports India Rice for Forbes. “Broadly speaking, immunotherapy is a range of cancer treatments that aim to strengthen the immune system’s ability to fight cancer,” explains Rice. “But what makes Surge’s solution different is that it’s applied during surgery as opposed to other immunotherapies that are delivered weeks before or weeks after surgery.”

WCVB

Prof. Regina Barzilay speaks with Nicole Estephan of WCVB-TV’s Chronicle about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.

HealthDay News

Prof. Bruce Walker and his team have found that CD8+ T cells can allow HIV patients to control the virus without the use of medications, reports Alan Mozes for HealthDay. “About one in 300 people are able to control HIV without the need for medications,” says Walker. “[It appears] that it is the CD8+ T cell response that achieves this control.”

CNN

Researchers at MIT developed a system that uses artificial intelligence to help predict future risk of developing breast cancer, reports Poppy Harlow for CNN. What this work does “is identifies risk. It can tell a woman that you’re at high risk for developing breast cancer before you develop breast cancer,” says Larry Norton, medical director of the Lauder Breast Center at the Memorial Sloan Kettering Cancer Center.

The Boston Globe

Boston Globe reporter Ryan Cross spotlights Chroma Medicine, a biotech startup co-founded by MIT researchers that is “developing a new class of gene editing technologies that could control how our genetic code is read without changing the code itself.” Cross explains that Chroma Medicine’s technology could “have broad applications for treating both rare and common diseases.”

The Boston Globe

Researchers at MIT have developed new gene-editing technology that can move large sequences of DNA into the human genome, reports Ryan Cross for The Boston Globe. “The molecular tool gives scientists a new way to completely replace broken genes, paving the way to potential cures for diseases such as cystic fibrosis,” writes Cross.

New Scientist

Prof. Kevin Esvelt speaks with New Scientist reporter Michael Le Page about his work outlining a roadmap to help counter the risk posed by pandemic terrorism. “The message is, this is serious but this is totally solvable,” says Esvelt.

Wired

Research from Synlogic, a biotech company founded by Profs James Collins and Timothy Lu, has found that it’s the company’s engineered bacteria could provide some benefit to patients with a rare genetic disease, reports Emily Mullin for Wired. “Similar to how you might program a computer, we can tinker with the DNA of bacteria and have them do things like produce a drug at the right time and the right place, or in this case, break down a toxic metabolite,” says Lu.