Skip to content ↓

Topic

Construction

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 26 news clips related to this topic.
Show:

New York Times

Prof. Admir Masic speaks with New York Times reporter Amos Zeeberg about his research studying the benefits of lime clasts – a material used in ancient Roman infrastructure. According to Masic’s research, “these lime clasts were actually reservoirs of calcium that helped fill in cracks, making the concrete self-healing,” writes Zeeberg. “As cracks formed, water would seep in and dissolve the calcium in the lime, which then formed solid calcium carbonate, essentially creating new rock that filled in the crack.”

Fast Company

Fast Company reporter Adele Peters spotlights how researchers at MIT have combined cement with carbon black to make concrete that can store energy as one of the climate tech innovations that provide hope “that it’s still possible to avoid the worst impacts of climate change.” With this new technology, “the foundation of your future house could eventually store solar power from your roof,” explains Peters.

Newsweek

MIT researchers have developed a supercapacitor comprised of concrete and charcoal, that can store electricity and discharge as needed, reports Aleks Phillips for Newsweek. Researchers hope the device can provide “a cheap and architectural way of saving renewable energy from going to waste,” writes Phillips.

Associated Press

In an article about how researchers are exploring why ancient Roman and Mayan buildings are still standing, AP reporter Maddie Burakoff highlights how researchers from MIT found that an ancient Roman technique for manufacturing concrete gave the material “self-healing” properties. “We don’t need to make things last quite as long as the Romans did to have an impact,” says Prof. Admir Masic. If we add 50 or 100 years to concrete’s lifespan, “we will require less demolition, less maintenance and less material in the long run.”

The Boston Globe

Researchers at MIT have developed a supercapacitor, an energy storage system, using cement, water and carbon, reports Macie Parker for The Boston Globe. “Energy storage is a global problem,” says Prof. Franz-Josef Ulm. “If we want to curb the environmental footprint, we need to get serious and come up with innovative ideas to reach these goals.”

Fast Company

Fast Company reporter Adele Peters writes that MIT researchers have developed a new type of concrete that can store energy, potentially enabling roads to be transformed into EV chargers and home foundations into sources of energy. “All of a sudden, you have a material which can not only carry load, but it can also store energy,” says Prof. Franz-Josef Ulm.

New Scientist

MIT engineers have uncovered a new way of creating an energy supercapacitor by combining cement, carbon black and water  that could one day be used to power homes or electric vehicles, reports Jeremy Hsu for New Scientist. “The materials are available for everyone all over the place, all over the world,” explains Prof. Franz-Josef Ulm. “Which means we don’t have the same restriction as with batteries.”

Popular Science

MIT researchers have discovered that when combined with water, carbon black and cement can produce a low-cost supercapacitor capable of storing electricity for later use, reports Andrew Paul for Popular Science. “With some further fine-tuning and experimentation, the team believes their enriched cement material could one day compose portions of buildings’ foundations, or even create wireless charging,” writes Paul.

Science

Researchers at MIT have found that cement and carbon black can be combined with water to create a battery alternative, reports Robert Service for Science. Professor Franz-Josef Ulm and his colleagues “mixed a small percent of carbon black with cement powder and added water,” explains Service. “The water readily combines with the cement. But because the particles of carbon black repel water, they tend to clump together, forming long interconnected tendrils within the hardening cement that act like a network of wires.”

Wired

Researchers at MIT have discovered what makes ancient Roman concrete “exponentially more durable than modern concrete,” reports Jim Morrison for Wired. “Creating a modern equivalent that lasts longer than existing materials could reduce climate emissions and become a key component of resilient infrastructure,” writes Morrison.

Scientific American

MIT researchers have discovered that ancient Romans used calcium-rich mineral deposits to build durable infrastructure, reports Daniel Cusick for Scientific American. This “discovery could have implications for reducing carbon emissions and creating modern climate-resilient infrastructure,” writes Cusick.

NPR

Prof. Admir Masic speaks with NPR host Scott Simon about the concrete blend used by the ancient Romans to build long standing infrastructures. “We found that there are key ingredients in ancient Roman concrete that lead to a really outstanding functionality property in the ancient mortar, which is self-healing,” explains Masic.

Reuters

Reuters reporter Will Dunham writes that a new study by MIT researchers uncovers the secret ingredient that made ancient Roman concrete so durable and could “pave the way for the modern use of a replicated version of this ancient marvel.” Prof. Admir Masic explains that the findings are “an important next step in improving the sustainability of modern concretes through a Roman-inspired strategy.”

CNN

MIT researchers have discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties, reports Katie Hunt for CNN. "Concrete allowed the Romans to have an architectural revolution," explains Prof. Admir Masic. "Romans were able to create and turn the cities into something that is extraordinary and beautiful to live in. And that revolution basically changed completely the way humans live."

Science

Scientists from MIT and other institutions have uncovered an ingredient called quicklime used in ancient Roman techniques for manufacturing concrete that may have given the material self-healing properties, reports Jacklin Kwan for Science Magazine. When the researchers made their own Roman concrete and tested to see how it handled cracks, “the lime lumps dissolved and recrystallized, effectively filling in the cracks and keeping the concrete strong,” Kwan explains.