A new way to create realistic 3D shapes using generative AI
Researchers propose a simple fix to an existing technique that could help artists, designers, and engineers create better 3D models.
Researchers propose a simple fix to an existing technique that could help artists, designers, and engineers create better 3D models.
This new device uses light to perform the key operations of a deep neural network on a chip, opening the door to high-speed processors that can learn in real-time.
Marzyeh Ghassemi works to ensure health-care models are trained to be robust and fair.
The technique could make AI systems better at complex tasks that involve variability.
The Tree-D Fusion system integrates generative AI and genus-conditioned algorithms to create precise simulation-ready models of 600,000 existing urban trees across North America.
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI's potential for creating robotics training data.
Yiming Chen ’24, Wilhem Hector, Anushka Nair, and David Oluigbo will start postgraduate studies at Oxford next fall.
An AI method developed by Professor Markus Buehler finds hidden links between science and art to suggest novel materials.
MIT and IBM researchers are creating linkage mechanisms to innovate human-AI kinematic engineering.
By sidestepping the need for costly interventions, a new method could potentially reveal gene regulatory programs, paving the way for targeted treatments.
A new design tool uses UV and RGB lights to change the color and textures of everyday objects. The system could enable surfaces to display dynamic patterns, such as health data and fashion designs.
MIT engineers’ new model could help researchers glean insights from genomic data and other huge datasets.
Researchers show that even the best-performing large language models don’t form a true model of the world and its rules, and can thus fail unexpectedly on similar tasks.
Researchers are leveraging quantum mechanical properties to overcome the limits of silicon semiconductor technology.
As he invents programmable materials and self-organizing systems, Skylar Tibbits is pushing design boundaries while also solving real-world problems.