TechCrunch
TechCrunch reporter Brian Heater spotlights multiple MIT research projects, including MIT Space Exploration Initiative’s TESSERAE, CSAIL’s Robocraft and the recent development of miniature flying robotic drones.
TechCrunch reporter Brian Heater spotlights multiple MIT research projects, including MIT Space Exploration Initiative’s TESSERAE, CSAIL’s Robocraft and the recent development of miniature flying robotic drones.
MIT engineers have created insect-sized robots that can emit light when they fly and could eventually be used to aid search-and-rescue missions, reports WHDH. “Our idea is, if we can send in hundreds or thousands of those tiny flying robots then once they find that survivor, they will shine out light and pass information back and signal people on the outside saying ‘we found someone who’s trapped,'” explains Prof. Kevin Chen.
MIT engineers have developed tiny flying robots that can light up, reports Colleen Hagerty for Popular Science. “If you think of large-scale robots, they can communicate using a lot of different tools—Bluetooth, wireless, all those sorts of things,” says Prof. Kevin Chen. “But for a tiny, power-constrained robot, we are forced to think about new modes of communication.”
Researchers at MIT have created a 3D-printable Oreometer that uses twisting force to determine if it is possible to evenly split an Oreo cookie, reports Juandre for Popular Mechanics. “While studying the twisting motion, the engineers also discovered the torque required to successfully open an Oreo is about the same as what’s needed to turn a doorknob—a tenth of the torque required to open a bottle cap,” writes Juandre.
A group of MIT scientists led by PhD candidate Crystal Owens has developed an Oreometer, a device used to determine if it is possible to evenly split an Oreo cookie every time, reports Maria Jimenez Moya for USA Today. “One day, just doing experiments, and, all of a sudden we realized that this machine would be perfect for opening Oreos because it already has … the fluid in the center, and then these two discs are like the same geometry as an Oreo,” says Owens.
MIT researchers have developed an “Oreometer” to test the optimal way to split an Oreo cookie, an exercise in rheology, or the study of how matter flows, reports Isaac Shultz for Gizmodo. "Our favorite twist was rotating while pulling Oreos apart from one side, as a kind of peel-and-twist, which was the most reliable for getting a very clean break,” explains graduate student Crystal Owens.
Writing for Science, Charlie Greenwood spotlights how MIT researchers are building upon their pioneering work twisting sheets of graphene together to create superconductors by using twisted graphene to develop working devices. “Many researchers are excited by the promise of exploring electronic devices without worrying about the constraints of chemistry,” writes Greenwood.
Writing for Quanta Magazine, David Freedman spotlights Prof. Pablo Jarillo-Herrero’s discovery that when twisted to a “magic” angle, graphene can act as a semiconductor. Freedman writes that the “discovery has given scientists a relatively simple platform for exploring exotic quantum effects.”
Prof. Pablo Jarillo-Herrero speaks with Gizmodo reporter Ryan Mandelbaum about his work showing that when twisted to the right angle, graphene can serve as an insulator or semiconductor. “This sort of field of ‘twistronics’ is something with great potential in terms of scientific discovery and intellectual interest,” Jarillo-Herrero explains.
Nature reporter Elizabeth Gibney spotlights Prof. Pablo Jarillo-Herrero’s discovery that graphene can act as a superconductor when twisted to a magic angle. “I haven’t seen this much excitement in the graphene field since its initial discovery,” said ChunNing Jeanie Lau, a professor at Ohio State University, of the impact of Jarillo-Herrero’s findings.
Prof. Pablo Jarillo-Herrero’s discovery that when graphene is rotated to a “magic angle” it can act as a high-temperature superconductor has been named the Physics World 2018 Breakthrough of the Year. Physics World reporter Hamish Johnston writes that the “discovery led to the development of ‘twistronics’, which is a new and very promising technique for adjusting the electronic properties of graphene.”
Researchers from MIT are using the brittle nature of graphene to mass produce cell-sized robots, writes David Grossman of Popular Mechanics. Called “syncells” or synthetic cells, the researchers hope they can be used in biomedical testing. “Inject hundreds into the bloodstreams and let the data fly back into sensors,” explains Grossman.
IEEE Spectrum reporter Mark Anderson highlights how Prof. Jeehwan Kim’s research group has developed techniques to produce ultrathin semiconducting films and harvest the materials necessary to manufacture 2-D electronics. Anderson explains that the group’s advances could make possible such innovations as high-efficiency solar cells attached to a car’s exterior and low-power, long-lasting wearable devices.
MIT researchers have discovered that arranging two stacked layers of graphene at a slight angle makes the material a superconductor, writes Elizabeth Gibney for Nature. After discovering that the graphene had the ability to conduct electrons, researchers applied “a small electric field to feed just a few extra charge carriers into the system, and it became a superconductor.”
IEEE Spectrum reporter Dexter Johnson writes that MIT researchers have developed a technique for producing cheaper semiconductor wafers using graphene. The method could “make the use of exotic semiconductors more accessible to industries by preparing semiconductor thin films without the high cost of using bulk wafers.”