Skip to content ↓

Topic

Brain and cognitive sciences

Download RSS feed: News Articles / In the Media / Audio

Displaying 121 - 135 of 485 news clips related to this topic.
Show:

Bloomberg

Prof. David Rand and Prof. Gordon Pennycook of the University of Regina in Canada found that people improved the accuracy of their social media posts when asked to rate the accuracy of the headline first, reports Faye Flam for Bloomberg. “It’s not necessarily that [users] don’t care about accuracy. But instead, it’s that the social media context just distracts them, and they forget to think about whether it’s accurate or not before they decide to share it,” says Rand.

Science

Prof. Mircea Dincǎ, Prof. Evelyn Ning-Yi Wang, Prof. Ian W. Hunter, Prof. Guoping Feng, and Senior Research Scientist David H. Shoemaker were elected as Fellows of AAAS for their efforts on behalf of the advancement of science and its applications to better serve society, reports Science.

NPR

A new study by MIT researchers provides evidence that babies and toddlers understand people have a close relationship if they are willing to share saliva via sharing food or kissing, reports Nell Greenfieldboyce for NPR. "From a really young age, without much experience at all with these things, infants are able to understand not only who is connected but how they are connected," says postdoc Ashley Thomas. "They are able to distinguish between different kinds of cooperative relationships."

STAT

MIT scientists have discovered that infants use saliva sharing as a cue in distinguishing close relationships, reports Andrew Joseph for STAT. “Saliva-sharing interactions provide externally observable cues of thick relationships, and young humans can use these cues to make predictions about subsequent social interactions,” the researchers explain.

Science

Science reporter Bridget Alex spotlights a new study by MIT researchers that finds children as young as 8-months-old can infer the social significance in swapping saliva with those they are closely bonded with. This is a “big step in this new science of what preverbal infants already know about human sociality,” explains Prof. Alan Fiske of the University of California, Los Angeles.

USA Today

USA Today reporter Karen Weintraub spotlights Prof. Li-Huei Tsai’s work studying a potential new approach to treating Alzheimer's disease and “whether certain tones of sound and frequencies of light can help regulate brain waves and help clear our cellular trash, including toxic proteins.” Tsai explains that: “The major difference between this approach and all other approaches is that this approach doesn’t just target one molecule or one pathway or one cell type. This is a holistic approach to take care of the whole system.”

STAT

STAT reporter Megan Molteni writes that a new study by MIT researchers finds that senescent cells, which are linked to aging, may potentially be a cause of Down syndrome. “We hope it opens up new avenues for how we look at Down syndrome — that there seems to be this whole other element that plays on a different timeline that we really need to explore more.”

The Boston Globe

Boston Globe reporter Kevin Lewis spotlights how MIT researchers surveyed thousands of Democrats and Republicans to rate the reliability of nonpolitical news headlines. “People genuinely believe that opposing partisans are more gullible, even when that stereotype is costly to them,” writes Lewis. “On the other hand, that stereotype can be corrected with evidence.”

GBH

Graduate student Olumakinde “Makinde” Ogunnaike and Josh Sariñana PhD ’11 join Boston Public Radio to discuss The Poetry of Science, an initiative that brought together artists and scientists of color to help translate complex scientific research through art and poetry. “Science is often a very difficult thing to penetrate,” says Sariñana. “I thought poetry would be a great way to translate the really abstract concepts into more of an emotional complexity of who the scientists actually are.”

The Boston Globe

Writing for The Boston Globe, Prof. Li-Huei Tsai underscores the need for the Alzheimer’s research community to “acknowledge the gaps in the current approach to curing the disease and make significant changes in how science, technology, and industry work together to meet this challenge.” Tsai adds: “With a more expansive mode of thinking, we can bridge the old innovation gaps and cross new valleys of discovery to deliver meaningful progress toward the end of Alzheimer’s.”

Wired

Wired reporter Adam Rogers spotlights Prof. Nancy Kanwisher’s research on the fusiform face area, which becomes active when a person sees a face, and what would happen if the area were intentionally activated.  Kanwisher’s experiment “certainly suggested the possibility, the power, of jacking directly into the brain,” writes Rogers.  

Scientific American

Scientific American reporter Dana G. Smith spotlights how Prof. Rebecca Saxe and her colleagues have found evidence that regions of the visual infant cortex show preferences for faces, bodies and scenes. “The big surprise of these results is that specialized area for seeing faces that some people speculated took years to develop: we see it in these babies who are, on average, five or six months old,” Saxe tells Smith. 

Naked Scientists

The Naked Scientist podcaster Verner Viisainen spotlights how MIT researchers studied vector-based navigation in humans. “What we discovered is actually that we don’t follow the shortest path but actually follow a different kind of optimization criteria which is based on angular deviation,” says Prof. Carlo Ratti.

Popular Science

Popular Science reporter Charlotte Hu writes that MIT researchers have simulated an environment in which socially-aware robots are able to choose whether they want to help or hinder one another, as part of an effort to help improve human-robot interactions. “If you look at the vast majority of what someone says during their day, it has to do with what other [people] want, what they think, getting what that person wants out of another [person],” explains research scientist Andrei Barbu. “And if you want to get to the point where you have a robot inside someone’s home, understanding social interactions is incredibly important.”

TechCrunch

MIT researchers have developed a new machine learning system that can help robots learn to perform certain social interactions, reports Brian Heater for TechCrunch. “Researchers conducted tests in a simulated environment, to develop what they deemed ‘realistic and predictable’ interactions between robots,” writes Heater. “In the simulation, one robot watches another perform a task, attempts to determine the goal and then either attempts to help or hamper it in that task.”