Skip to content ↓

Topic

Biological engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 327 news clips related to this topic.
Show:

Forbes

Jasmina Aganovic ’09 founded Future Society, a brand that uses sequenced DNA from extinct flowers to create new scents, reports Celia Shatzman for Forbes. “[With] plants that are from another time, never before have we been able to time travel through smell,” says Aganovic. “But now we can do that, thanks specifically to DNA sequencing. It’s an example of where we're starting off with this concept of limitless nature. It isn't just about stories; it's also about performance.”

Newsweek

Researchers from MIT and elsewhere have “genetically engineered bacteria to efficiently turn plastic waste into useful chemicals,” reports Aristos Georgiou for Newsweek. MIT Prof. James Collins and University of Illinois Urbana-Champaign Prof. Ting Lu explain that they see two potential applications for their work. "In the former case, plastic waste collected from oceans and landfills would be transported to a facility where it would be bioprocessed with engineered microbes,” they note. “In our latter scenario, these microbes could be deployed directly in lands or oceans to bio-transform plastic debris in situ.”

Nature

Writing for Nature, graduate student Jelle van der Hilst offers advice on determining whether the data resulting from an experiment is meaningful and useful. “Although in research it is crucial that you don’t fully trust your data until it has been triple-proven and peer-reviewed,” writes van der Hilst, “we do have to gain some operational confidence in our methods and results. Otherwise, crippled by self-doubt, we’d never bring any new research into the world.”

The Boston Globe

Michal Caspi Tal, a principal research scientist in the department of biological engineering, speaks with Boston Globe reporter Kay Lazar about her research aimed at better understanding why some people develop chronic illness after infection with Lyme disease and Covid-19. “Long Covid and chronic Lyme share so many features that it’s uncanny,” said Tal. “This is a solvable problem. This is not rocket science. This just needs to be looked at with fresh eyes.”

Financial Times

Researchers at MIT and elsewhere have used artificial intelligence to develop a new antibiotic to combat Acinetobacter baumannii, a challenging bacteria known to become resistant to antibiotics, reports Hannah Kuchler for the Financial Times. “It took just an hour and a half — a long lunch — for the AI to serve up a potential new antibiotic, an offering to a world contending with the rise of so-called superbugs: bacteria, viruses, fungi and parasites that have mutated and no longer respond to the drugs we have available,” writes Kuchler.

WCVB

Prof. Regina Barzilay speaks with Nicole Estephan of WCVB-TV’s Chronicle about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.

Science

MIT researchers have discovered an RNA-guided DNA-cutting enzyme in eukaryotes, reports Science. “The researchers speculate that eukaryotic cells may have gained the newly identified editing genes from transposable elements—so-called jumping genes—they received from bacteria,” writes Science.

Popular Science

MIT researchers have identified a new biological editing system that could “potentially be even more precise than CRISPR gene editing,” reports Laura Baisas for Popular Science. The new system, based on a protein called Fanzor, is “the first programmable RNA-guided system discovered in eukaryotes,” Baisas notes.

USA Today

Researchers from MIT and McMaster University have used artificial intelligence to identify a new antibiotic that can fight against a drug-resistant bacteria commonly found in hospitals and medical offices, reports Ken Alltucker for USA Today. The researchers believe the AI “process used to winnow thousands of potential drugs to identify one that may work is an approach that can work in drug discovery,” writes Alltucker.

The World

Researchers from MIT and elsewhere have used artificial intelligence to develop a new antibiotic to address Acinetobacter baumannii, a bacteria known for infecting wounds, lungs and kidneys, reports Harland-Dunaway for The World.

CNN

Using a machine-learning algorithm, researchers from MIT and McMaster University have discovered a new type of antibiotic that works against a type of drug-resistant bacteria, reports Brenda Goodman for CNN. Goodman notes that the compound “worked in a way that stymied only the problem pathogen. It didn’t seem to kill the many other species of beneficial bacteria that live in the gut or on the skin, making it a rare narrowly targeted agent.”

The Guardian

Researchers from MIT and McMaster University used a machine-learning algorithm to identify a new antibiotic that can treat a bacteria that causes deadly infections, reports Maya Yang for The Guardian. The researchers used an “AI algorithm to screen thousands of antibacterial molecules in an attempt to predict new structural classes. As a result of the AI screening, researchers were able to identify a new antibacterial compound which they named abaucin,” writes Yang.

Newsweek

Prof. Jongyoon Han and research scientist Junghyo Yoon have developed a new portable desalination device that can deliver safe drinking water at the push of a button, reports Meghan Gunn and Kerri Anne Renzulli for Newsweek. The device “requires less power than a cell phone charger to run and produces clean drinking water that exceeds World Health Organization standards,” writes Gunn and Renzulli.

The Boston Globe

Ginkgo Bioworks, a biotech company founded by Jason Kelly BS ’03, PhD ’08, Reshma Shetty PhD ‘08, Barry Canton PhD ’08, Austin Che PhD ’08 and Professor Tom Knight, is working to develop synthetic fragrances, reports Scott Kirsner for The Boston Globe.

CNN

Callie Gade and Nate Bonham of CNN’s Discovery Daily Podcast spotlight how researchers from MIT developed a 3D printed replica of the human heart that can help doctors customize treatments for patients before conducting open heart surgery or other intrusive procedures. “These more patient-specific heart replicas can help future researchers develop and identify treatments for people with unique health problems,” says Gade.