Skip to content ↓

Topic

Astronomy and astrophysics

Download RSS feed: News Articles / In the Media / Audio

Displaying 181 - 195 of 446 news clips related to this topic.
Show:

The Verge

Prof. Kiyoshi Masui speaks with Verge reporter Loren Grush about how astronomers have detected fast radio bursts coming from a magnetar within our own galaxy. “This is the missing link,” Masui says. “Now we’ve seen a fast radio burst coming from a magnetar, so it proves that at least some fraction of fast radio bursts we see in the universe come from magnetars.”

CBS Boston

CBS Boston reporter Juli McDonald spotlights how NASA's ORISIS-Rex spacecraft carried a key imagine instrument, designed and built by students from MIT and Harvard, on its mission to sample the surface of the asteroid Bennu. Prof. Richard Binzel, co-investigator for the mission, explains that, the device was developed to “measure the asteroid in X-ray light, which is part of the process of figuring out what the asteroid is made out of.”

The Boston Globe

When NASA’s OSIRIS-Rex spacecraft touched down on the asteroid Bennu, onboard was the REgolith X-Ray Imaging Spectrometer (REXIS), a device built by students from MIT and Harvard, write Breanne Kovatch and Andrew Stanton for The Boston Globe. “We as scientists feel the drive of curiosity and the thrill of exploration and it’s humbling and satisfying to think that we can share that sense of exploration with the world,” explains Prof. Richard Binzel, a co-investigator for the mission.

CBS Boston

CBS Boston spotlights how Andrea Ghez ’87 has been awarded the 2020 Nobel Prize in Physics for her work discovering a supermassive black hole at the center of our galaxy. “It really represents the basic research - you don’t always know how it is going to affect our lives here on Earth, but it is pushing the frontier of our knowledge forward," says Ghez, "both from the point of view of pure physics (understanding what a black hole is), and then also their astrophysical world in the formation and evolution of galaxies.”

The Boston Globe

Andrea Ghez ’87 has been selected as one of the winners of this year’s Nobel Prize in Physics for her work advancing our understanding of black holes. "Black holes, because they are so hard to understand, is what makes them so appealing,'' says Ghez. “I really think of science as a big, giant puzzle.”

CBS News

Astronomers have found that the M87* black hole appears to be wobbling, reports Sophie Lewis for CBS News. “The wobbling is big news — it allows scientists to study the object's accretion flow,” writes Lewis. “Studying that region is key to understanding how the black hole and surrounding matter interact with the host galaxy.”

Gizmodo

Gizmodo reporter George Dvorsky writes that astronomers from the Event Horizon Telescope collaboration, including MIT Haystack Observatory researchers, have studied the physical changes to M87* black hole and found that it appears to be wobbling. “With this paper, we’ve now entered into a new era of studying the intimate areas around black holes,” writes Dvorsky.

Forbes

MIT researchers have discovered an Earth-sized planet, named K2-315b, which is being referred to as the “pi planet” for its 3.14 day orbit, reports Allison Gasparini for Forbes. “Having planets like K2-315b will help us to further understand the diverse planet bodies out there,” says graduate student Prajwal Niraula.

The Guardian

 “At our best, scientists are explorers and what I’ve discovered is that life can change in the blink of an eye,” writes Prof. Sara Seager in an excerpt from her new book, “The Smallest Lights in the Universe” published by The Guardian. “We need to hold on to the glimmers of hope – however small – and to continue to search for what really matters.”

CBS This Morning

Prof. Sara Seager speaks with Holly Williams on CBS This Morning about the discovery of phosphine in the atmosphere of Venus. “Finding phosphine leaves us with two equally crazy ideas,” says Seager. “One is that there is some unknown chemistry, and the other one is that there’s some possibility there might be some kind of life producing phosphine on Venus.”

The Washington Post

Research scientist Clara Sousa-Silva speaks with Washington Post reporters Joel Achenbach and Marisa Iati about her work trying to determine whether phosphine in the clouds of Venus could be a potential indicator of life. “We did our very best to show what else would be causing phosphine in the abundance we found on Venus,” says Sousa-Silva. “And we found nothing. We found nothing close.”

CNN

Writing for CNN, Prof. Sara Seager explores the significance of the paper she co-authored detailing the discovery of phosphine on Venus. “Our finding of phosphine gas now raises Venus as just one more place to take seriously in the search for life beyond Earth,” writes Seager, “maybe not so crazy after all.”

Wired

Wired reporter Sarah Scoles spotlights the work of research scientist Clara Sousa-Silva, known as Dr. Phosphine on Twitter, and her quest to learn more about phosphine. Scoles writes that Sousa-Silva is a “leading expert in this little-characterized molecule. She identified 16.8 billion features across the full spectrum, greatly expanding on the mere thousands anyone knew about before.”

The Wall Street Journal

Wall Street Journal reporter Daniela Hernandez writes about a new study co-authored by MIT researchers detailing signs of phosphine on Venus. Clara Sousa-Silva, a research scientist at MIT, explains that Venus is an “abominable place,” but noted that “the clouds themselves could be habitable.”

The Boston Globe

The discovery of phosphine, a potential indicator of life, in the atmosphere of Venus, “is unbelievably important, and it is unbelievably exciting,” says research scientist Janusz Petkowski in an interview with Boston Globe reporter Martin Finucane. “Everything about this is completely unexpected.”