Skip to content ↓

Topic

3-D printing

Download RSS feed: News Articles / In the Media / Audio

Displaying 76 - 90 of 200 news clips related to this topic.
Show:

Fast Company

MIT’s Self-Assembly Lab collaborated with Swiss designer Christoph Guberan on a collection of 4D-printed “functional inflatable lamps, vases, and vessels,” which are now for sale at a New York gallery. “Rather than setting out to create a preconceived set of products, the resulting works were organically formed as an extension of the research process itself,” writes Aileen Kwun for Fast Company.

Make

Tasker Smith, a technical instructor in the Department of Mechanical Engineering, writes for Make Magazine about his work developing 3-D printed tools to create a custom leather press. “By marrying the versatility of digital design and fabrication with luxurious materials like leather,” writes Smith, “we can supercharge our process and generate customized artifacts worthy of handing down from generation to generation.”

Quartz

MIT researchers have developed a new technique to 3-D print magnetic robots that could one day be used as biomedical devices, reports Erik Olsen for Quartz. “The engineers have enabled the bots to roll, crawl, jump, and even snap together like a Venus flytrap to grasp a pill and then roll away with it,” explains Olsen.

co.design

MIT researchers have created a new fabrication technique to create intricate, 3-D printed magnetic options that react to magnetic fields hitting them at different angles, reports Mark Wilson for Co.Design. In the future the structures, “could be placed in the human body, manipulated via wireless, harmless magnetism, and carry out intricate tasks like on-site drug delivery.”

Forbes

Prof. Xuanhe Zhao and his colleagues have designed a 3D printer that can create shape-shifting soft materials. The group purposefully created the “materials and the method to be user friendly to enable a wide range of applications,” reports Fiona McMillan for Forbes.

WBUR

Prof. Xuanhe Zhao speaks with WBUR about how he and his colleagues have developed a new technique to create soft, pliable structures that could carry out medical procedures within the human body. “Since the human body is soft, it's beneficial to develop a device that has a similar rigidity as soft tissues in the human body,” explains Zhao.

Mashable

In this video, Mashable highlights a new method developed by MIT researchers to 3-D print soft robots that can crawl, fold and carry a pill. The team hopes the structures, which can be controlled with a magnet, could eventually be used as a medical device to take tissue samples or deliver treatments.

BBC News

Lara Lewington reports for BBC Click on how MIT researchers have developed a technique to create 3-D printed soft structures that can be controlled with a magnet. Lewington explains that the structures could eventually be used in biomedical devices to “take images, extract samples, deliver drugs or even surround a blood vessel to control the pumping of blood.”

Xinhuanet

Researchers at MIT have created 3D-printed structures that can be controlled by a magnet. The structures included a tube that could squeeze shut, a sheet that could fold, and “a spider-like ‘grabber’ that could crawl, roll, jump, and snap together fast enough to catch a passing ball,” reports Mu Xuequan for Xinhua.

New Scientist

Using magnetic nanoparticles that have been mixed into rubber, Associate Prof. Xuanhe Zhao has created “3D printed shapes that fold, morph, and move in the presence of a magnetic field,” reports Leah Crane for New Scientist. In the future, Zhao believes this work could have medical applications, “like assisting minimally invasive surgeries,” notes Crane.

NBC News

NBC Mach reporter Tom Metcalfe writes that MIT researchers are developing autonomous boats that could be used to ferry goods and people and could help ease traffic congestion. “We believe that with fleets of very agile autonomous boats we can offload some street traffic onto the waterways,” explains Prof. Daniela Rus.

co.design

Co.Design reporter Jesus Diaz writes that MIT researchers have developed a new technique to 3-D print photorealistic representations of objects. Diaz explains that this could have significant potential in education and scientific visualization: “While you can look at a 3D representation of data in virtual or augmented reality, looking at a real physical model is an experience that is hard to beat.”

CNBC

Researchers from MIT's CSAIL and Senseable City Lab “have designed a fleet of 3-D printed autonomous boats [that] could eventually taxi people and deliver goods,” reports CNBC’s Erin Black. The boats “can also be equipped to monitor a city's water quality,” Black explains.

Wired

Wired reporter Jack Stewart highlights how MIT researchers have developed a 3-D printed autonomous boat that could be used to ferry goods or people. The boats could eventually, “use their onboard GPS sensors and inertial measurement units to precisely position themselves in packs, forming instant floating bridges, or stages, or platforms for pop-up food markets on the water.”

Popular Mechanics

Researchers at MIT’s Self-Assembly Lab are developing an inflatable, stretchy, 3-D printed material that could be used in cars, writes Laura Yan for Popular Mechanics. “Inflatable materials could mean fully customizable car interiors: seats that can merge and inflate into different orientations and configurations, the ability to program the hardness or softness of your seats, redesigned airbags (of course), and perhaps much more,” explains Yan.