

Prepared For:

Massachusetts Institute of Technology Investment Management Company 238 Main Street Cambridge, Massachusetts

Prepared By:

Environmental Health & Engineering, Inc. 60 Wells Avenue Newton, MA 02459-3210

> EH&E Report #14877 January 5, 2007

P:\14877\Report\Data Summary\Data Summary Report.doc

©2007 by Environmental Health & Engineering, Inc. All rights reserved

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY1
2.0 PROJECT BACKGROUND4
2.1 SITE DESCRIPTION4
2.2 FIRE BACKGROUND4
2.3 EH&E INVOLVEMENT4
3.0 METHODS
3.1 DIRECT-READ METHODS5
3.2 SURFACE DUST METHODS6
3.3 AIR SAMPLES7
4.0 RESULTS AND DISCUSSION
4.1 VOLATILE ORGANIC COMPOUNDS9
4.2 POLYCYCLIC AROMATIC HYDROCARBONS
4.3 TRACE METALS
4.4 POLYCHLORINATED BIPHENYLS14
4.5 DIOXINS AND FURANS16
4.6 PARTICLES
4.7 RESULTS DISCUSSION17
5.0 INDOOR ENVIRONMENT CRITERIA FRAMEWORK
5.1 EPA WORLD TRADE CENTER INDOOR ENVIRONMENT FRAMEWORK 19
5.2 POST FIRE INDOOR ENVIRONMENT ACCEPTANCE CRITERIA 19
6.0 POST FIRE INSPECTION AND TESTING PROGRAM
6.1 VISUAL INSPECTION22
6.2 SURFACE WIPE SAMPLING22
6.3 AIR SAMPLING23
6.4 COMPOUND SPECIFIC WIPE SAMPLE EVALUATIONS
6.5 CONCLUSIONS
7.0 REFERENCES

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

- Appendix A Limitations
- Appendix B Site Photographs
- Appendix C Laboratory Data
- Appendix D Health-based Acceptance Criteria Calculation Data
- Appendix E TRC Environmental, Inc. Laboratory Data

LIST OF TABLES

- Table 4.1Summary of Pre-Cleaning Surface Dust Concentrations for Polycyclic
Aromatic Hydrocarbon Concentrations Collected from One Broadway,
Cambridge, Massachusetts, December 10 and 11, 2006
- Table 4.2Trace Metal Wipe Sample Summary Results for Antimony and Lead from
One Broadway, Cambridge, Massachusetts, December 10 through
December 19, 2006
- Table 4.3 Airborne Concentrations of Trace Metals from One Broadway During Clean Up of the Vault and Switchgear Rooms and Their Associated Occupational Limits, Collected by TRC Environmental, Inc., December 13, 2006
- Table 4.4Polychlorinated Biphenyls Wipe Sample Summary Results from One
Broadway, Cambridge, Massachusetts
- Table 4.5 Air Sample Results for Polychlorinated Biphenyls from One Broadway and Published Occupational Exposure Limit, Collected by TRC Environmental, Inc. on December 13, 2006, During Soot Cleaning
- Table 4.6Dioxin Toxic Equivalents Pre-cleaning and Cleaning Wipe Sample Results
from One Broadway, Cambridge, Massachusetts, December 14 and 19, 2006
- Table 5.1
 Health-based Post-fire Indoor Environment Surface Dust Acceptance Criteria for Tenant Occupiable Spaces, One Broadway, Cambridge, Massachusetts
- Table 5.2
 Health-based Post-fire Indoor Environment Airborne Acceptance Criteria for

 Tenant Occupiable Spaces, One Broadway, Cambridge, Massachusetts
- Table 6.1Air Sample Results Following Cleaning Activities from One Broadway,
Cambridge, Massachusetts, December 29, 2006
- Table 6.2Airborne Concentrations of Trace Metals from One Broadway and TheirAssociated Occupational Limits, December 29, 2006

TABLE OF CONTENTS (Continued)

LIST OF ABBREVIATIONS AND ACRONYMS

Building	One Broadway, Cambridge, Massachusetts
EH&E	Environmental Health & Engineering, Inc.
EPA	U.S. Environmental Protection Agency
GC/ECD	gas chromatography/electron capture detection
GC/MS	gas chromatography/mass spectrometry
HRGC/HRMS	high-resolution gas chromatography/high-resolution mass spectroscopy
ICP/AA	inductively coupled plasma/ atomic absorption
ICP/AES	inductively coupled plasma/atomic emission spectrometry
MADEP	Massachusetts Department of Environmental Protection
MCP	Massachusetts Contingency Plan
mg/kg	milligram per kilogram
mg/m ³	milligram per cubic meter
NAAQS	National Ambient Air Quality Standards
ng/m ²	nanograms per square meter
NIOSH	National Institute for Occupational Safety and Health
OSHA	U.S. Occupational Safety and Health Administration
PAH	polycyclic aromatic hydrocarbon
PID	photoionization detector
PCB	polychlorinated biphenyl
ppb	parts per billion
ppm	parts per million
SVOC	semi-volatile organic compound
TEF	toxic equivalent factor
TEQ	toxic equivalent
TRC	TRC Environmental, Inc.
TSCA	Toxic Substances Control Act
TVOC	total volatile organic compound
VOC	volatile organic compound
WHO	World Health Organization
WTC	World Trade Center, New York City, New York
μg/100 cm²	micrograms per 100 square centimeters
μ g/ft ²	micrograms per square foot
μ g/m ²	micrograms per square meter
μg/m³	micrograms per cubic meter

1.0 EXECUTIVE SUMMARY

On December 8, 2006, at approximately 11 a.m. a transformer caught fire and burned in the basement of the building located at One Broadway in Cambridge, Massachusetts (the Building). The Building is a 300,000 square foot, 17-story office tower that houses approximately 800 occupants. All tenants were evacuated from the Building.

Environmental Health & Engineering, Inc. (EH&E) was retained to characterize the soot on the interior of the Building, assess the potential occupant exposures to the soot and smoke, determine appropriate health-based acceptance criteria for the Building (surfaces and air), and confirm, through testing and inspections, that the criteria have been achieved. EH&E's risk characterization is on-going and will be provided along with the associated data as soon as it is complete.

This report summarizes the environmental data obtained to date and explains the postfire indoor environmental re-occupancy criteria taken from the health-based acceptance criteria developed for the Building.

Beginning the weekend of December 9, 2006, EH&E conducted a series of inspections and testing work to characterize the soot deposited by the fire. EH&E's visual observations indicated that the soot deposits were largely confined to the fire area (vault, switchgear room), the stairwell ventilation ductwork that is located between the basement and first floor, and the lower portions of stairwell two with particular emphasis on the first floor ventilation grill. Visible soot was less apparent on upper floors of the two stairwells. No visible soot or discernible fire-related odors were noted in the tenant spaces.

EH&E conducted an environmental sampling program to assess the soot and its constituents on the surfaces within the Building prior to cleaning. The purpose of this effort was to:

- Delineate the nature and extent of the residual soot.
- Determine post-fire indoor environment acceptance criteria for re-occupancy.

• Collect data for use in a retrospective risk characterization for those potentially exposed to the soot or smoke during the evacuation from the Building.

At the end of this program and following cleaning activities, EH&E conducted further wipe and air samples to confirm the successful completion of cleaning and determined that health-based re-occupancy criteria have been met in the Building.

This report addresses the first two elements of EH&E's effort.

EH&E tested for the following constituents in the Building:

- Volatile organic compounds
- Polycyclic aromatic hydrocarbons
- Polychlorinated biphenyls
- Dioxin and furans
- Trace metals
- Particles

The data that EH&E has obtained at the Building show that levels of the compounds of concern were almost all below appropriate health-based acceptance criteria in the occupiable spaces for high and low contact surfaces of the Building *before* these spaces were cleaned. There were only two areas where pre-cleaning samples tested above the health-based acceptance criteria, and neither of these areas is occupied by tenants. This finding is consistent with EH&E's observation that the most heavily soot-impacted areas are confined to the source of the fire and its immediate vicinity (vault, switchgear room, stairwell ventilation duct). As a conservative measure, the post-fire indoor environment inspection and sampling program targeted soot-impacted areas with a particular emphasis on the vault, switchgear, and stairwell spaces, where concentrations of the soot constituents were likely to be elevated. Sampling in other parts of the Building was also conducted and confirmed that almost all of the pre- and post-cleaning levels of the compounds of concern in these spaces were below the health-based re-occupancy criteria.

Based on our analysis of the testing results, inspection program, and resulting data, from post-cleaning indoor air and wipe samples, the Building environment is safe for reoccupancy for the Building's tenants.

2.0 PROJECT BACKGROUND

2.1 SITE DESCRIPTION

The Building is a 300,000 square foot, 17-story office tower located at One Broadway in Cambridge, Massachusetts. There are reportedly 800 occupants of the Building. The Building is principally a multi-tenant office environment with retail stores on the ground floor level.

2.2 FIRE BACKGROUND

On December 8, 2006, at approximately 11 a.m. a transformer caught fire and burned in the basement of the Building. According to reports from the Cambridge Fire Department, the fire burned for approximately fifteen minutes. According to eyewitness accounts, smoke and soot generated in the basement vault entered the switchgear room and the emergency exit stairwells. All tenants in the Building were evacuated.

2.3 EH&E INVOLVEMENT

The Massachusetts Institute of Technology and NSTAR's post-fire response included a clean-up and recovery program to clean and repair fire- and smoke-related damage to the Building prior to its re-occupancy. EH&E was retained to characterize the residual soot deposition on the Building's interior, to help address possible health concerns of the occupants regarding potential exposures to the soot and smoke, and to recommend health-based clean up levels for the soot constituents on or in various media inside the Building, including indoor air. Our health risk characterization is currently being prepared, and will be provided, along with the supporting data, once it is complete. This report summarizes the environmental data analyzed to date and establishes post-fire indoor environment criteria for the residual soot constituents inside the Building.

3.0 METHODS

EH&E and TRC Environmental, Inc., (TRC) NSTAR's environmental consultant, collected samples of the soot from the fire from various locations and surfaces where soot deposition was evident; and collected samples (including air samples) in several tenant common spaces (e.g., elevator lobbies) where there were no signs of soot deposition. Approximately 148 samples have been collected to date, including the fire-damaged vault and switchgear rooms, elevator lobby areas, the two emergency stairwells, stairwell ventilation components (blower and ductwork runs from the basement to the first floor, with corresponding exhaust components on the seventeenth floor), and air handlers located in the basement (serving the basement and the first floor lobby). The samples were evaluated for the following compounds based on the source of the fire (electrical transformer), EH&E's and TRC's experience evaluating similar fire-and smoke-related effects in other buildings, and published data in the scientific literature:

- Volatile organic compounds (VOCs)
- Polycyclic aromatic hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs Aroclor analysis)
- Dioxin and furans
- Trace metals
- Particles

3.1 DIRECT-READ METHODS

EH&E's response following the weekend of December 9, 2006, provided an immediate quantitative assessment of the indoor environmental quality conditions in the Building. EH&E surveyed various locations throughout the Building using direct-reading devices for toxic gases and particulate matter to determine if an acutely hazardous environment existed within the indoor air.

A Multi-RAE four-gas meter and ppbRAE total volatile organic compounds (TVOC) monitor (Rae Systems, San Jose, California) were used to measure concentrations of TVOCs in indoor air. These devices use a photoionization detector (PID) with nominal

detection limits of 1.0 parts per million (ppm) and 0.1 ppm, respectively. These portable, hand-held instruments are especially sensitive to molecules with a carbon-carbon double bond and provide readout of the TVOC load in a Building environment, normalized to a standard (e.g., isobutylene). The PID instrument was carried from location to location throughout the Building and, at each measurement location, the probe was held at a height designed to approximate the breathing zone of occupants.

Concentrations of total suspended airborne particulate matter were obtained with a Dust Trak (TSI Incorporated, St. Paul, Minnesota) or a Casella MicroDust Pro (Casella USA, Amherst, New Hampshire). The real-time measurements were compared to published U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standard (NAAQS) for particles.

3.2 SURFACE DUST METHODS

Between December 10 and December 29, 2006, EH&E obtained surface wipe and residual soot samples in numerous locations, focusing on the soot-impacted areas prior to, during, and after substantial cleaning of the surfaces. The samples were analyzed for a suite of trace metals, PAHs, PCBs, dioxins, and furans that were selected based on potential hazards from electrical fires. All of the laboratories were accredited for the analyses that they performed. Soot was present on surfaces in the fire area and immediately adjacent locations (transformer vault, switchgear room) and in certain ducts and grills associated with the stairwell ventilation system.

Generally, soot consists of elemental carbon, organic carbon, metals, and ash. These constituents manifest as particles that are microns to millimeters in size, composed of agglomerations of hundreds to thousands of primary particles that are 2 to 35 nanometers in size. The chemical composition of soot depends on the fuel and the combustion conditions. Metals present in soot may reflect the metals present in the fuel source, particularly if temperatures during a fire exceed the boiling point of the metals in the fuel source.

The organic carbon fraction of soot can include PAHs, a family of complex organic compounds associated with charred organic material, such as wood. PCBs, a family of

aromatic organo-chlorine compounds, may be released when PCB-containing materials are burned. Dioxins and furans are a family of compounds related to PCBs that may be produced when PCBs or organic material are burned in the presence of chlorine within the proper temperature range and oxygen content.

Locations for surface sampling of metals, PAHs, PCBs, dioxins, and furans were chosen to represent the areas where visible soot was noted, conservatively biasing the results toward finding soot constituents. The transformer vault (fire area) was sampled and considered to be representative of higher possible levels of the compounds of concern.

Wipe samples were collected from numerous locations to assess the PAH, metal, PCB, dioxin, and furan content of the soot that had deposited on surfaces as a result of the fire. Samples were collected both in the fire and soot-impacted areas, as well as several tenant spaces not impacted by the fire or soot residues. Each wipe sample was obtained by wiping a prescribed, controlled surface area (e.g., one square foot). Duplicate samples, method blanks, and field blanks were collected for quality control purposes. Metal wipes were collected using sterile Ghost Wipes[™] soaked in de-ionized water. PAH, PCBs, and dioxin and furan wipes were collected using sterile gauze wipes soaked in hexane. Wipe samples were sent to Liberty Mutual Analytical Laboratories (Hopkinton, Massachusetts) for metals analyses by inductively coupled plasma/atomic absorption (ICP/AA) following U.S. Occupational Safety and Health Administration (OSHA) Method ID-121. Analyses for PAHs and PCBs were conducted by Groundwater Analytical, Inc. using gas chromatography/mass spectrometry (GC/MS) following EPA Method 8270C or gas chromatography/electron capture detection (GC/ECD) following EPA Method 8082, respectively. Dioxin and furan analyses were conducted by Columbia Analytical Services, Inc. (Houston, Texas) by high-resolution gas chromatography and highresolution mass spectroscopy (HRGC/HRMS) following EPA Method 8290.

3.3 AIR SAMPLES

Air samples were collected in select locations for the compounds of concern to assess the effectiveness of the cleaning, and to evaluate and document the pre-occupancy indoor air quality within the building environment. Samples were collected in both the soot-impacted areas as well as tenant spaces not affected by the fire or soot residues for comparison purposes. Samples were collected for laboratory analyses for metals, PCBs, and for real-time monitoring of airborne particles. PAHs were not sampled as the surface wipe data indicated that these compounds were confined to just the heavily soot-impacted areas in the basement and on the stairwell two ventilation grill on the first floor. No PAHs were detected in the wipe samples collected from outside these two areas. Dioxin was measured indirectly by applying a very conservative and health-protective weighting factor to the airborne particulate measurements in Building. The highest dioxin concentration measured in the soot (in the fire area) was applied, as a fraction of the measured dust, to the airborne particulate readings. This assessment assumes that all the airborne particles are made up of soot from the fire with the highest levels of dioxin found in all the samples. This assumption will significantly overestimate the actual dioxin concentrations, providing a large margin of safety. If these estimated airborne particle levels are below the dioxin re-occupancy criteria, then the actual levels of dioxin would be significantly below the health-based acceptance criteria.

Air samples for metals were analyzed using National Institute for Occupational Safety and Health (NIOSH) Method 7300 at Liberty Mutual Analytical Laboratories using inductively coupled plasma/atomic emission spectrometry (ICP/AES). Air samples for PCBs were analyzed in accordance with NIOSH Method 5503 by Galson Laboratories (Syracuse, New York) using GC/ECD. Airborne particles were sampled using real-time air sampling instruments as described in section 3.1 of this report.

4.0 **RESULTS AND DISCUSSION**

4.1 VOLATILE ORGANIC COMPOUNDS

The chemical (or organic carbon) fraction of soot can include VOCs. VOCs would have been formed as a byproduct of incomplete combustion. VOCs generally have low boiling points, and evaporate quickly at room temperature. Because of the short duration of the fire at One Broadway (approximately 15 minutes according to Cambridge Fire Department), and the rapid dissipation rate of VOCs, EH&E only conducted real-time monitoring to screen for the presence of VOCs in the Building during our initial response. In general, VOC levels as then measured in the Building were typical for office environments without sources of VOCs.

4.2 POLYCYCLIC AROMATIC HYDROCARBONS

PAHs are a class of semi-volatile organic compounds (SVOCs) that generally have much higher boiling points, and consequently do not readily evaporate. Many SVOCs will readily condense to a solid phase at room temperature. As a result, SVOCs were more likely than VOCs to be associated with soot present in the One Broadway building. The pre-cleaning soot sample that was collected from the vault on December 9, 2006, by TRC was analyzed for SVOCs. Results indicated the presence of a number of PAHs in the soot. However, concentrations of the identified PAHs were at or below the corresponding Massachusetts Department of Environmental Protection (MADEP) S-1 standards in the Massachusetts Contingency Plan (MCP), which were used for comparative purposes because they are the most health protective standards in the MCP for soil borne contamination.

EH&E collected nine pre-cleaning wipe samples from various locations throughout the Building on December 10 and one sample on December 11, which were analyzed for PAHs to further characterize the extent of the presence of these compounds. EH&E's sample results are summarized in Table 4.1.

Table 4.1	Summary of Pre-Cleaning Surface Dust Concentrations for Polycyclic Aromatic
	Hydrocarbon Concentrations Collected from One Broadway, Cambridge,
	Massachusetts, December 10 and 11, 2006

	Samples Collected from Stairwell	Number of Samples	Fresh Air	Stairwell	
	and	with	Duct for	Two	Switchgear
	Occupiable	Detectable	Vault	Ventilation	Room
Target Analyte	Areas	PAHs	(µg/ft²)	Grill (µg/ft ²)	(µg/ft²)
Naphthalene	7	0	BRL <5	BRL <102.9	BRL <48
2-Methylnaphthalene	7	0	BRL <5	BRL <102.9	BRL <48
Acenaphthylene	7	0	BRL <5	205.7	BRL <48
Acenaphthene	7	0	BRL <5	BRL <102.9	BRL <48
Fluorene	7	0	BRL <5	226.3	BRL <48
Phenanthrene	7	0	6	2,880	BRL <48
Anthracene	7	0	BRL <5	699.4	BRL <48
Fluoranthene	7	0	BRL <5	1,769.1	57.6
Pyrene	7	0	BRL <5	1,625.1	67.2
Benzo(a)anthracene	7	0	BRL <5	411.4	BRL <48
Chrysene	7	0	BRL <5	349.7	BRL <48
Benzo(b)fluoranthene	7	0	BRL <5	390.9	BRL <48
Benzo(k)fluoranthene	7	0	BRL <5	BRL <102.9	BRL <48
Benzo(a)pyrene	7	0	BRL <5	288	BRL <48
Indeno(1,2,3-cd)pyrene	7	0	BRL <5	185.1	BRL <48
Dibenzo(a,h)anthracene	7	0	BRL <5	BRL <102.9	BRL <48
Benzo(g,h,i)perylene	7	0	BRL <5	164.6	BRL <48

PAH polycyclic aromatic hydrocarbon

 μ g/ft² micrograms per square foot

BRL below reporting limit

* Calculated detection limit ranged from 5 to 8 μ g/ft² based on analyte and wipe surface area.

Samples analyzed by Groundwater Analytical, Inc., Buzzards Bay, Massachusetts, using U.S. Environmental Protection Agency 8270C.

EH&E's wipe results confirmed the presence of PAHs on surfaces that were heavily impacted by soot from the fire; however, PAHs were non-detect on surfaces outside of the immediate vicinity of the fire area and the stairwell two ventilation grill.

4.3 TRACE METALS

The pre-cleaning soot sample from the fire area that was collected on December 9, 2006, by TRC was analyzed for trace metals. Results indicated the presence of a number of metals in the soot. Based on EH&E's experience with other fire-related indoor

environmental assessments, some metals correlate with visible soot. In other words, more visibly soot-impacted surfaces tend to have higher concentrations of specific metals than less visibly impacted surfaces. In the case of the One Broadway fire, antimony and lead concentrations appear to correlate with soot impact. Higher concentrations of antimony and lead were present in samples collected from areas with more visible soot. In areas with little or no visible soot, antimony and lead concentrations were generally much lower. Elevated levels of these compounds may be used as a marker for soot from the fire. EH&E's sample results are summarized in Table 4.2.

Table 4.2 Trace Metal Wipe Sample Summary Results for Antimony and Lead from One Broadway, Cambridge, Massachusetts, December 10 through December 19, 2006						
Sample Description	Sample Numbers	Antimony (μg/ft ²)	Samples Greater than 530* µg/ft ²	Lead (µg/ft ²)	Samples Greater than 40* µg/ft ²	
Pre	-Cleaning Inv	estigation Phas	e (December 1	0 – 13)		
Stair ventilation duct (exhaust side, seventeenth floor)	2	7.4, 23	0	19.8, 37.4	0	
Stairwell	5	BRL <0.5 to 11.4	0	BRL <0.6 to 4.2	0	
Stair ventilation duct (supply side, first floor)	1	7,200	1	2,262	1	
Fire impact area (Switchgear room)	1	1,056	1	624	1	
Air intake for vault	1	380	0	170	1	
Basement HVAC components	2	53.8, 78.8	0	21.9, 175.5	1	
Fire area	5	4 to 2,250	2	12.8 to 2,250	3	
Main lobby	1	7.2	0	8.1	0	
Tenant spaces	2	BRL <1.2	0	BRL <1.3, 1.7	Ō	

Table 4.2 Continued					
Sample Description	Sample Numbers	Antimony (μg/ft ²)	Samples Greater than 530* μg/ft ²	Lead (µg/ft ²)	Samples Greater than 40* µg/ft ²
Clea	aning and Pos	t-Cleaning Pha	se (December 1	7 – 19)	-
Basement air intake duct	5	BRL <0.8 to 22.9	0	3.1 to 109.8	3
Air intake to vault	1	64.8	0	153	1
Stairwells	5	BRL <0.6 to 3	0	0.9 to 5.3	0
Stair ventilation duct (exhaust side, seventeenth floor)	4	1.8 to 14.9	0	2.6 to 225	2
Stairwells	5	BRL <0.5 to BRL <1	0	BRL <0.6 to BRL <1	0
Stair ventilation duct (first floor supply side)	2	2.8, 10.5	0	14.8, 165.8	1
Basement HVAC components	1	15.2	0	13.2	0
Fire area	2	2.3, 65.5	0	3.0, 99.8	1

 μ g/ft² micrograms per square feet

BRL below reporting limit

HVAC heating, ventilating, and air-conditioning

* Post-fire health-based acceptance criteria for antimony and lead for occupiable spaces.

Samples analyzed by Liberty Mutual Industrial Hygiene Laboratory, Hopkinton, Massachusetts, using U.S. Occupational Safety and Health Administration ID-121.

None of the post-cleaning sample results exceed the post-fire health-based acceptance criteria in occupiable spaces.

The following table summarizes pre-cleaning air data for select trace metals that were collected by TRC on December 13, 2006, in the first floor lobby, vault, and switchgear rooms. In addition, the second column of the table shows personnel monitoring data collected from a Clean Harbors worker conducting cleaning operations in the vault and switchgear rooms. The third column shows airborne occupational guidelines for each respective metal analyte, none of which were exceeded.

Target Analyte	One Broadway (μg/m³)	Personal Monitoring of Clean Harbors Worker (μg/m ³)	Occupational TWA* (μg/m³)
Aluminum	ND <16 to ND <17	ND <18	2,000
Antimony	ND <5.4 to ND <6.2	ND <0.62	500
Arsenic	ND <0.3 to ND <0.4	0.4	10
Beryllium	ND <0.02	ND <0.02	2
Cadmium	ND <0.041 to 0.18	0.61	5
Chromium	ND <0.82 to ND <0.87	ND <0.9	500
Cobalt	ND <0.08 to ND <0.09	ND <0.09	20
Copper	ND <0.82 to 8.9	38	200
Iron	ND <2.2 to 19	18	5,000
Lead	ND <0.8 to ND <0.9	1.6	50
Manganese	ND <0.08 to 0.3	0.53	200
Molybdenum	ND <1.6 to ND <1.7	ND <1.8	500
Nickel	ND <0.8 to ND <0.9	ND <0.9	100
Vanadium	ND <1.6 to ND <1.7	ND <1.8	50
Zinc	ND <0.8 to 4	14	5,000

Table 4.3Airborne Concentrations of Trace Metals from One Broadway During Clean Up of
the Vault and Switchgear Rooms and Their Associated Occupational Limits,
Collected by TRC Environmental, Inc., December 13, 2006

 μ g/m³ micrograms per cubic meter TWA time-weighted average

ND non-detect

* Based on the lower of published National Institute of Occupational Safety and Health (NIOSH) or U.S. Occupational Safety and Health Administration (OSHA) guidelines.

Both the surface wipe samples and the air samples indicate that levels of marker metals (antimony and lead) were below the established health-based risk criteria outside of the fire-impacted areas during soot cleaning activities. Suggesting that levels of these compounds would be below the established health-based acceptance criteria outside of the fire-impacted areas after cleaning activities were completed.

Because mercury may be found in some electrical components, sampling and analysis were conducted to determine whether it was present in soot after the fire. The soot sample from the vault (fire area) contained a concentration of 0.157 ppm of mercury in the sample. This concentration is well below the MCP S-1 standard for mercury in soil of 20 ppm, which is the most health protective standard set by the MADEP in the MCP. Based on this very low result for mercury in soot from the fire area, additional testing for mercury was not performed.

4.4 POLYCHLORINATED BIPHENYLS

Historically, PCB-containing oil generally was used as a dielectric fluid in some older transformers. EH&E therefore collected a sample of the oil from the main transformer tank that was damaged during the One Broadway fire to determine if the fluid contained PCBs. The oil contained residual levels of PCBs (27 ppm) that would be classified as a non-PCB oil under the EPA's PCB environmental regulations (Toxic Substance Control Act [TSCA]). TRC also collected a sample of the same oil and confirmed EH&E's test results. Additional testing of an oil/water mixture from the floor of the vault (believed to be from the fire suppression effort) indicated the presence of PCBs at 18 ppm, according to data reported by TRC. EH&E and TRC each collected a sample from an undamaged sealed side tank that was on the damaged transformer. The EH&E sample result from this sealed tank tested at 490 ppm for PCBs. EH&E understands that this small side tank was a non-contact cooling unit for the damaged transformer, and that the tank was not damaged by the fire.

EH&E collected wipe samples for PCBs from surfaces in the Building. Prior to cleaning, only one sample tested above the EPA TSCA acceptance criterion of 10 micrograms per 100 square centimeters ($10 \mu g/100 \text{ cm}^2$; or 92.9 micrograms per square foot [$\mu g/ft^2$]) of total PCBs for unrestricted use. This sample ($35.2 \mu g/100 \text{ cm}^2$ or $329 \mu g/ft^2$) was collected from the stairwell two ventilation grill located on the first floor. However, a sample collected from a wall surface adjacent to the grill was below the detection limit (< $0.1 \mu g/100 \text{ cm}^2$). The next highest sample result was collected from soot-impacted surface in the switchgear room ($8.5 \mu g/100 \text{ cm}^2$). Based on the post-fire health-based acceptance criterion of 26 $\mu g/ft^2$, only the pre-cleaning sample from the stairwell two ventilation grill and from the fire area tested above the criterion.

Table 4.4 Polychlorinated Biphenyls Wipe Sample Summary Results from One Broadway, Cambridge, Massachusetts

Sample Description	Sample Numbers	Surface PCB	Samples Greater		
	indifiber 3		than 20 µg/it		
Pre-Cleaning I	nvestigation P	hase (December 10 – 13)			
Stair ventilation duct (exhaust	2	1.9,	0		
side, seventeenth floor)		1.9			
Stairwell/occupied space	5	BRL <0.9 to BRL <1.9	0		
Stair ventilation duct (supply side,	1	329	1		
seventeenth floor)					
Fire area	1	23	0		
Air intake for vault	1	2.8	0		
Fire area and immediate vicinity	3	BRL <1.9 to 79	1		
Basement hallway area	1	BRL <1.9	0		
Main lobby	1	4.6	0		
Initial Cleaning and Post-Cleaning Phase (December 20)					
Stair Ventilation duct (supply side)	2	BRL <1.9 to BRL <3.7	0		
μg/ft ² micrograms per square foot					

BRL below reporting limit

Polychlorinated biphenyl concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD).

The following table summarizes the air data for PCBs that were collected by TRC in the first floor lobby, vault, and switchgear rooms during cleaning operations. In addition, the second column of the table shows personnel monitoring data collected from a Clean Harbors worker conducting cleaning operations in the vault and switchgear rooms.

Table 4.5Air Sample Results for Polychlorinated Biphenyls from One Broadway and Published Occupational Exposure Limit, Collected by TRC Environmental, Inc. on December 13, 2006, During Soot Cleaning								
Target AnalyteOne Broadway Fire Areas and Main Lobby (μg/m³)Personal Monitoring of Clean Harbors Worker (μg/m³)Occupational REL* (μg/m³)								
PCBs	ND <0.76 to ND <1.3	ND <0.76	1.0					
μg/m ³ micrograms per cubic meter ND non-detect REL Recommended Exposure Limit * Based on the lower of published National Institute of Occupational Safety and Health (NIOSH) or U.S. Occupational Safety and Health Administration (OSHA) guidelines.								

The air samples were non-detect for PCBs during soot cleaning operations.

4.5 DIOXINS AND FURANS

Dioxins may be formed as a result of combustion processes and from burning fuels (like wood, coal or oil) in the presence of chlorine. Because of the nature of the transformer fire and the fuel sources involved (mineral oil and plastic components), both TRC and EH&E collected samples for dioxin analysis. The pre-cleaning soot sample that was collected from the vault on December 9, 2006, by TRC was analyzed for dioxins. Results indicated the presence of dioxins in the soot of 67.8 parts per billion (ppb) adjusted for the World Health Organization's (WHO) toxic equivalent factors (TEFs), which take into account the relative toxicity of the different compounds of dioxins and furans (referred to in this report collectively as dioxins).

Table 4.6Dioxin Toxic Equivalents Pre-cleaning and Cleaning Wipe Sample Results from One Broadway, Cambridge, Massachusetts, December 14 and 19, 2006							
Sample Description	Number of Samples	Dioxin TEQ Concentration Range (ng/m ²)	Samples* Greater Than 4.8 ng/m ²				
Pre-0	Cleaning Sampl	es (December 14)					
Stair Ventilation Duct (exhaust)	1	4.93	1				
Stairwells	3	0.89 to 8.74	2				
Elevator lobby	2	0.03, 0.38	0				
Stair two ventilation grill	1	4,119	1				
Fire area (vault)	1	124	1				
Basement HVAC component	1	5.56	1				
Cleaning Samples (December 19)							
Stair two ventilation grill	1	4.94	1				
Basement, ventilation duct	1	25.07	1				

TEQ toxic equivalent

ng/m² nanogram per square meter

HVAC heating, ventilating, and air-conditioning

Samples analyzed by Columbia Analytical Services, Inc. (Houston, Texas) using U.S. Environmental Protection Agency Method 8290

^{*} Health-based acceptance criterion for high contact surfaces in occupiable spaces. The health-based acceptance criterion for low contact surfaces in occupiable spaces is 9.5 ng/m².

Results indicate that levels of dioxins on surfaces were almost all below the appropriate health-based acceptance criterion with the exception of the samples from the vault room and the stairwell ventilation grill even before cleaning.

4.6 PARTICLES

Particulates are formed as a result of combustion processes. In order to assess airborne concentrations of particulates after the fire, EH&E conducted real-time monitoring for particulates periodically during the investigation and cleaning phases of the project. Airborne concentrations in the fire area were generally higher (0.17 milligram per cubic meter to 0.3 [mg/m³]) compared to non-fire areas (0.02 to 0.13 mg/m³). However, the particulate concentrations in the fire areas were expected to be comparatively higher given the presence of visible soot and ongoing recovery and cleaning activities in the fire areas.

4.7 RESULTS DISCUSSION

Data collected by EH&E and TRC shortly after the fire showed that the fire-damaged transformer contained non-PCB dielectric fluid. This finding suggested that potential exposures to PCBs and dioxins would be limited. This result was supported by EH&E's data. Any potential exposures to PCBs and dioxins resulting from the fire have been further minimized by the extensive cleaning and verification sampling that has occurred in the Building. All post-cleaning PCB wipe and air samples have been well-blow established health-based acceptance criteria for PCBs.

The data that EH&E has obtained at the Building show that levels of the compounds of concern were almost all below health-based acceptance criteria in the occupiable spaces *before* these spaces were cleaned. There were only two areas where precleaning samples tested above the health-based acceptance criteria, and neither of these areas is occupied by tenants. This finding is consistent with EH&E's observation that the most heavily soot-impacted areas are confined to the source and immediate vicinity of the fire (vault, switchgear room, stairwell ventilation duct). Therefore, as a conservative measure, the post-fire indoor environment inspection and sampling program targeted the soot-impacted areas, with a particular emphasis on the vault, switchgear, and stairwell spaces where concentrations of the soot constituents were

likely to be elevated. Sampling in other parts of the Building was also conducted to confirm that pre- and post-cleaning levels of the compounds of concern in these spaces remained below the health-based re-occupancy criteria.

Our detailed risk characterization concerning these data and the potential exposures of Building occupants to smoke and soot is currently being performed. The results of the more in-depth retrospective risk characterization will be provided under a separate cover when completed.

The health-based criteria noted above were adapted from a peer-reviewed framework developed and implemented by the EPA related to the World Trade Center (WTC) cleanup and recovery operations in New York City (EPA 2003). This comprehensive risk assessment was developed 20 months after the collapse of the WTC buildings, and an expert panel comprised of specialists from various federal and state agencies provided feedback concerning the document. The EPA framework was designed to protect the most sensitive sub-populations (e.g., children) in a residential setting from exposures to contaminants generated by the collapse of the WTC towers. The screening criteria for the Building were adjusted to account for an adult population in an occupational environment. This analysis is presented with more detail in the next section of the report.

5.0 INDOOR ENVIRONMENT CRITERIA FRAMEWORK

5.1 EPA WORLD TRADE CENTER INDOOR ENVIRONMENT FRAMEWORK

In preparing the health-based acceptance criteria for the Building, EH&E adapted the decision framework presented in EPA's peer-reviewed WTC document to identify what compounds would comprise the post-fire indoor environment acceptance criteria and to establish health-based criteria for these compounds.

The EPA framework established four steps that were used to identify compounds included in the post-clean up sampling and testing program for *residences* that had been impacted by dust and debris from the collapse of the WTC. The selection process eliminated from consideration compounds that met one or more of the following criteria:

- Volatile compounds, as they would dissipate within hours to days.
- Compounds detected infrequently (e.g., less than 5% of the time for sample sets greater than 20 samples).
- Compounds where the maximum measured concentration was less than healthbased screening levels.
- Compounds judged unlikely to exceed health-based screening levels, compounds not likely to be related to the contamination event, or compounds near or at levels considered to represent background.

5.2 POST FIRE INDOOR ENVIRONMENT ACCEPTANCE CRITERIA

Adapting this framework to the One Broadway building, the following compounds were included as part of the post-fire sampling and assessment program:

- Antimony
- Lead
- PCBs
- Dioxin

Health-based indoor environment criteria from the WTC Document were adjusted to account for occupational (versus residential) and population (adult versus children) differences between the One Broadway environment and residences affected by the WTC dust and debris. Please refer to Appendix D of this report and to the World Trade Center document for a more detailed review of the input parameters and assumptions governing the health-based acceptance criteria.

The following summarizes the health-based risk criteria used to evaluate the compounds of concern in the surface dust in occupiable spaces in the Building.

Table 5.1Health-based Post-fire Indoor Environment Surface Dust Acceptance Criteria for Tenant Occupiable Spaces, One Broadway, Cambridge, Massachusetts						
Compo	ound	RfD (mg/kg-day)	CSF (mg/kg-day) ⁻¹	Screening Value Adult Worker (μg/m²)	Toxicity Value Source	
Antimony		0.0004	NA	5,506	IRIS	
Lead		NA	NA	416	HUD standard	
Dioxin			1.0 E+6	0.0048	EPA 2000 Dioxin Reassessment	
PCBs-nor	n-cancer	0.00002	NA	275	IRIS	
PCBs—can	ncer	NA	2	2,409	IRIS	
RfD Reference dose mg/kg-day milligrams per kilograms per day CSF cancer slope factor µg/m ² micrograms per square meter NA not applicable IRIS Integrated Risk Information System (EPA) HUD Housing and Urban Development EPA U.S. Environmental Protection Agency PCB polychlorinated biphenyl						

Table 5.2 represents the health-based airborne indoor environment acceptance criteria for the compounds of concern at the Building.

Table 5.2 Health-based Post-fire Indoor Environment Airborne Acceptance Criteria for Tenant Occupiable Spaces, One Broadway, Cambridge, Massachusetts						
Compound	RfC (mg/m³)	IUR (mg/m ³⁻¹)	Screening Value Adult Worker (mg/m ³)	Toxicity Value Source		
Antimony	0.0004	NA	0.0016	NCEA		
Lead	NA	NA	0.0015	NAAQS		
Dioxin		290,000	4.7E-09	EPA 2000 Dioxin Reassessment		
PCBs—non-cancer ¹	0.00007	NA	0.00027	IRIS		
PCBs—cancer ²	NA	0.29	0.0047	IRIS		
PCBs—cancer ² NA 0.29 0.0047 IRIS RfC Reference concentration mg/m ³ milligrams per cubic meter lUR inhalation unit risk mg/m ³⁻¹ inhalation unit risk mg/m ³⁻¹ milligrams per cubic meter minus one factor NA not applicable NCEA National Center for Environmental Assessment NAAQS National Center for Environmental Assessment NAAQS National Ambient Air Quality Standards (EPA) EPA US Environmental Protection Agency PCBs Polychlorinated Biphenyls IRIS Integrated Risk Information System (EPA) ¹ IRIS does not list a RfC for PCBs. RfC converted from the reference dose (0.00002 milligram per kilogram per day) using the same assumptions that EPA used for converting the cancer slope factor (CSF) to an IUR (inhalation rate of 20 m ³ /day; bodyweight of 70 kg) 2 IUR based on CSF for high risk and persistence scenario (2 per milligram per kilogram per day)						

6.0 POST FIRE INSPECTION AND TESTING PROGRAM

6.1 VISUAL INSPECTION

EH&E relied on visual inspections as a primary metric to verify the completion and acceptance of the post-fire response and clean-up work. EH&E employed a "no visible soot" standard as the acceptance criterion for visual inspections. EH&E inspected cleaned surfaces by both visual inspection and by wiping the surfaces with a moistened white cloth or gauze to determine if any soot deposits remained on the surface (e.g., black residue). All cleaned surfaces were inspected to determine acceptability. If visible soot deposits were found, the area or component was re-cleaned and re-inspected to verify that the surface was free of visible soot.

6.2 SURFACE WIPE SAMPLING

In addition to visual inspections, EH&E collected surface wipe samples to verify the visual inspections. EH&E recommended sampling of systems that has been cleaned and restored. The following details a list of inspected and sampled systems.

- Basement air handling unit
- Basement air intake ductwork
- Stairwell ventilation ductwork
- Stairwell surfaces
- Tenant premises and common areas (offices, lobbies, hallways, work surfaces)

Based on sample results from the post-fire investigation, EH&E sent collected wipe samples to an analytical laboratory to determine levels of antimony, lead, PCBs, and dioxin. Other trace metals were analyzed as part of the verification sampling in order to obtain a more comprehensive assessment of cleaning efficacy. As noted previously, EH&E observed that antimony concentrations appear to correlate well with visible soot. In the fire area and its immediate vicinity (the transformer vault and the switchgear room) the concentration of antimony seen in EH&E samples was comparatively higher than the concentration of antimony seen in areas with little to no visible soot indicating that antimony made a good marker for soot deposition.

Prior to re-occupancy, EH&E conducted air sampling of the Building to determine airborne concentrations of trace metals and PCBs. The air samples collected in the cleaned building were below established occupational and public health guidelines for both metals and PCBs and were well below the health-based acceptance criteria listed in Table 5.2.

Air sample results for PCBs are presented in the following Table 6.1.

Massachusetts, December 29, 2006					
Sample ID	Location, Description	Air Volume (liters)	Measured PCBs (μg)	Concentration (μg/m ³)	
81869/70	Outdoor air sample	Pump fault	BRL < 0.06	NA	
81873/74	First floor lobby	286	BRL <0.06	BRL <0.2	
81877/78	First floor lobby	293	BRL <0.06	BRL <0.2	
81881/82	Basement corridor by bathrooms	Pump fault	BRL <0.06	NA	
81883/84	Seventh floor elevator lobby	298	BRL <0.06	BRL <0.2	
81885/86	Fifth floor stairwell two	302	BRL <0.06	BRL <0.2	
81913	Field blank	NA	BRL <0.06	BRL <0.06 μg	
PCB polychlorinated biphenyl μg micrograms μg/m³ micrograms per cubic meter BRL below reporting limit NA not applicable National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (PEL) for					
total PCBs is 1 μ g/m ³ . Samples analyzed by Galson Laboratories (East Syracuse, New York) following NIOSH 5503.					

 Table 6.1
 Air Sample Results Following Cleaning Activities from One Broadway, Cambridge,

All samples were below the detection limit, although the sample pumps faulted in two locations so that concentrations for those two areas were unavailable.

Air sample results for metals are summarized in the following table.

Target Analyte	One Broadway (μg/m³) [*]	Occupational TWA ^{^{**} (μg/m³)}
Antimony	BRL <0.21 to BRL <0.22	500
Beryllium	BRL <0.01	2
Cadmium	BRL <0.02	5
Chromium	BRL <0.53 to BRL <0.54	500
Cobalt	BRL <0.22 to BRL <0.23	20
Copper	BRL <0.24	200
Iron	BRL <0.87 to BRL <0.89	5,000
Lead	BRL <0.22 to BRL <0.23	50
Manganese	BRL <0.05	200
Molybdenum	BRL <0.25 to BRL <0.26	500
Nickel	BRL <0.09 to BRL <0.1	100
Vanadium	BRL <0.25 to BRL <0.26	50
Zinc	BRL <0.47 to BRL <0.49	5,000

Table 6.2	Airborne Concentrations of Trace Metals from One Broadway and Their Associated
	Occupational Limits, December 29, 2006

 μ g/m³ micrograms per cubic meter

BRL below reporting limit

TWA time-weighted average

Pump for sample 81887 faulted, as a result calculated concentrations are unavailable.
 Based on the lower of published National Institute of Occupational Safety and Health (NIOSH) or U.S. Occupational Safety and Health Administration guidelines

Samples analyzed by Liberty Mutual Industrial Hygiene Laboratory (Hopkinton, Massachusetts) following NIOSH Method 7300.

All air sample results collected were well-below established occupational guidelines and the health-based re-occupancy criteria for airborne metal concentrations.

6.4 COMPOUND SPECIFIC WIPE SAMPLE EVALUATIONS

6.4.1 Antimony

The health-based re-occupancy criterion for antimony is based upon antimony acceptance levels established by the EPA for residential dust surfaces that were affected by the World Trade Center collapse. EPA used an acceptance criterion of 627 micrograms per square meter (μ g/m²) or 58.3 μ g/ft² for these residential surfaces. This health acceptance criterion was established to protect small children who would be in continuous direct contact with floor and horizontal surfaces in a residential setting. After adjusting for occupational exposures to an adult population, the antimony surface

concentration for the Building is 5,506 μ g/m² or 512 μ g/ft² for occupiable and non-occupiable spaces.

Results from the eight wipe samples collected on December 29, 2006, were mostly below the reporting limit for antimony. Two samples were above the detection limit, one sample collected on a table surface on the third floor was at 2.3 μ g/ft² and one sample from the cleaned first floor ventilation duct in stairwell two was at 5.6 μ g/ft². These two samples were still well-below the health-based acceptance criterion for antimony.

6.4.2 Lead

EH&E employed the EPA's lead paint standard of 40 μ g/ft² for floor surfaces that was established to protect children in a residential setting. This criterion is conservative as applied to a commercial office setting such as the Building because the 40 μ g/ft² standard accounts for both dermal and ingestion exposure pathways in small children for lead. EPA has also established a slightly higher clean-up criterion for interior window sills that also is geared to protect small children, which addresses inaccessible areas. For ductwork surfaces in the Building that are inaccessible contact surfaces, EH&E used the slightly higher concentration of 250 μ g/ft² that is still health protective, but factors in the inaccessible nature of these surfaces. Air sample results for lead were below the reporting limit and well below the established health-based acceptance criterion for airborne lead, suggesting that residual lead that may be found in the ductwork did not impact the air sample results.

Results from the eight wipe samples collected on December 29, 2006, were all below the appropriate health acceptance criteria for lead. The highest concentration of lead found in the eight samples was from the cleaned first floor ventilation duct in stairwell two. This sample was at 48 μ g/ft², well below the 250 μ g/ft² criterion established for ductwork. The next highest surface wipe concentration was 8.7 μ g/ft² from a sample collected inside the air intake duct in the basement. Lead surface concentrations from the five samples taken in the occupiable spaces ranged from below the reporting limit <0.6 to 2.4 μ g/ft², all well below the 40 μ g/ft² criterion.

6.4.3 Polychlorinated Biphenyls

The EPA has established a PCB wipe sample criterion of 10 μ g/100 cm² as an acceptance criterion for the unrestricted use of non-porous surfaces. In EH&E samples taken **prior** to any cleaning, only one sample was above this 10 μ g/100 cm² criterion. This sample was collected from the first floor ventilation grill for stairwell two. EH&E also collected a sample from a wall surface adjacent to the grill that was non-detect for PCBs.

EH&E based its criteria for PCBs measured in wipe samples from surfaces in the Building upon the acceptance levels established by the EPA for residential dust surfaces that were affected by the World Trade Center collapse. These criteria are lower than the established EPA acceptance criterion of 10 μ g/100 cm² or 100 μ g/m². The World Trade Center health acceptance criterion was established to protect small children who would be in continuous direct contact with floor and horizontal surfaces in a residential setting. After adjusting for occupational exposures to an adult population, the health-based acceptance criterion for PCBs surface concentration for occupiable spaces is 2.75 μ g/100 cm² or 275 μ g/m². The standard for non-occupiable spaces is the EPA's standard of 10 μ g/100 cm² for unrestricted use.

6.4.4 Dioxin

Currently, there are no established numerical standards for surface concentrations of dioxin. However, there are proposed concentrations that have been published in peerreviewed scientific literature and proposed concentrations used by the EPA for the World Trade Center clean-up that EH&E used as a basis for determining an acceptable surface re-occupancy criterion for the Building. In Michaud et al., the authors proposed a surface re-entry criterion for building occupants of PCB-containing transformer fires of 125 nanograms per square meter (ng/m²) for dioxins on a toxic equivalent (TEQ)-adjusted basis. More recently, the EPA proposed establishing an acceptance criterion of 2 ng/m² on a TEQ-adjusted basis for residential dust. As described in more detail in section 4.2, EH&E adjusted the methodology proposed by the EPA to address building occupant exposure parameters specific to the Building. Based on the adjusted calculations, EH&E used a criterion of 4.75 ng/m² of TEQadjusted dioxins for wipe samples from high contact occupiable spaces collected from the Building. For low contact surfaces such as stairwells, EH&E employed a slightly higher acceptance standard of 9.5 ng/m² based on the high contact surface criterion multiplied by two to adjust for lesser frequent surface contact inside the stairwells. For non-occupiable surfaces such as ductwork, EH&E employed a slightly higher acceptance standard of 23.75 ng/m² based on the occupiable acceptance criterion multiplied by five to adjust for less frequent surface contact within the ductwork. In samples collected **prior** to any cleaning, most samples were close to the 4.75 ng/m² criterion.

EH&E collected post-cleaning samples on December 29, 2006. These results are expected on January 9, 2007, and will be provided under a separate cover.

6.4.5 Particles

Particle concentrations in the tenant spaces of the One Broadway building were confirmed to be similar to concentrations found in typical commercial office buildings based on EH&E's experience. Typical particle concentrations in EH&E's experience range from 10 micrograms per cubic meter (μ g/m³) to 30 μ g/m³. EH&E confirmed these measurements were typical for commercial office buildings using real-time instruments. Particle concentrations collected on January 3, 2007, on tenant occupied floors were very low (5 to 12 μ g/m³). The particle concentration in the switchgear room of the basement was also low (21 μ g/m³). All of the January 3 measurements of particles are comparable to typical office buildings.

6.5 CONCLUSIONS

The post-fire indoor environment inspection and sampling program targeted the soot impacted areas, with a particular emphasis on the vault, switchgear, and stairwell spaces. Sampling in other parts of the Building was conducted to confirm that levels of the compounds of concern in these spaces were below the health-based re-occupancy criteria.

Based on the results of samples that EH&E collected and data we have reviewed from TRC, both before and during cleaning, the tenant occupiable spaces are safe to reoccupy. Data has consistently shown that levels of the compounds of concern were almost all below health-based acceptance criteria in the occupiable spaces even *before* these spaces were cleaned. Further testing following cleaning has confirmed that concentrations of all compounds of concern are below acceptable health-based levels.

As noted throughout the report, only two areas where samples tested above the healthbased acceptance criteria, and these areas are not occupied by the tenants. This finding is consistent with EH&E's observation that the most heavily soot-impacted areas are confined to the source of the fire and its immediate vicinity (vault, switch gear room, stairwell ventilation duct). Ongoing work in the basement with the installation of new power and switchgear equipment will keep portions of the basement space un-occupied

7.0 REFERENCES

EPA 40 CFR 50. National Primary and Secondary Ambient Air Quality Standards. *Code of Federal Regulations.* Title 40, Part 50. Washington, D.C.: U.S. Environmental Protection Agency.

EPA 40 CFR 50.8. National Primary Ambient Air Quality Standards for Carbon Monoxide. *Code of Federal Regulations*. Title 40, Part 50. Washington, D.C.: U.S. Environmental Protection Agency.

EPA. 1997. EPA 40 CFR Part 50. National Ambient Air Quality Standards for Particulate Matter; Final Rule. *Federal Register.* Washington, D.C. July 18, 1997.

EPA. 40 CFR 761. Polychlorinated biphenyls (PCBs) manufacturing, processing, distribution in commerce, and use prohibitions. *Code of Federal Regulations*, Title 40, Part 761. Washington, D.C.: U. S. Environmental Protection Agency.

EPA. 1996. Test Methods for Evaluating Solid Waste (SW-846), revision No. 3 (December, 1996).

EPA. 2003. World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-based Benchmarks. Prepared by the Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Task Force Working Group. May 2003. (http://www.epa.gov/wtc/copc_study.htm)

HEAST. 1994. *Health Effects Assessment Summary Tables Annual FY-1994 and Supplements.* Washington, D.C.: U.S. Environmental Protection Agency Office of Research and Development, Office of Emergency and Remedial Response.

MADEP. 310 CMR40. Massachusetts Contingency Plan.

NIOSH. 2005. *NIOSH Pocket Guide to Chemical Hazards.* Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.

NIOSH. 1994. Manual of Analytical Methods (NMAM®), 4th ed. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health. Publication 94-113, (August, 1994).

OSHA 29 CFR 1910.1000. Limits for Air Contaminants. *Code of Federal Regulations*. Title 29, Part 1910.1000, Subpart Z, 31:8101. Washington, D.C.: U.S. Occupational Safety and Health Administration.

TSCA. 1976. 15U.S.C.§2605(e), Polychlorinated biphenyls. Toxic Substances Control Act. Washington, D.C.: U.S. Environmental Protection Agency.

LIMITATIONS

- 1. Environmental Health & Engineering, Inc.'s (EH&E) assessment described in the attached report number 14877, Data Summary of Indoor Environmental Quality Results and Post-fire Indoor Environment Acceptance Criteria for One Broadway, Cambridge, Massachusetts (hereafter "the Report"), was performed in accordance with generally accepted practices employed by other consultants undertaking similar studies at the same time and in the same geographical area; and EH&E observed that degree of care and skill generally exercised by such other consultants under similar circumstances and conditions. The observations described in the Report were made under the conditions stated therein. The conclusions presented in the Report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services.
- 2. Observations were made of the site as indicated within the Report. Where access to portions of the site was unavailable or limited, EH&E renders no opinion as to the presence of chemical residues, or to the presence of indirect evidence relating to chemical residues in that portion of the site.
- 3. The observations and recommendations contained in the Report are based on limited environmental sampling and visual observation, and were arrived at in accordance with generally-accepted standards of industrial hygiene practice. The sampling and observations conducted at the site were limited in scope, and therefore cannot be considered representative of areas not sampled or observed.
- 4. When an outside laboratory conducted sample analyses, EH&E relied upon the data provided and did not conduct an independent evaluation of the reliability of these data.
- 5. The purpose of the Report was to assess the characteristics of the subject site as stated within the Report. No specific attempt was made to verify compliance by any party with all federal, state, or local laws and regulations.

SITE PHOTOGRAPHS

Photograph B.1 Fire-damaged Vault, December 10, 2006

Photograph B.2 Switchgear Room, December 10, 2006

Photograph B.3 First Floor Ventilation Grill in Stairwell Two, December 10, 2006

Photograph B.4 Close-up of Ventilation Grill Surface Following Removal, December 10, 2006

Photograph B.5 View of Stairwell Grill on Seventeenth Floor, December 10, 2006

Table C.1	Bulk Oil Sample Resu December 10, 2006	3ulk Oil Sample Results from One Broadway, Cambridge, Massachusetts, December 10, 2006				
Sample ID	Floor	Description	Aroclor 1242 ^{1,2} (ppm _w)	Notes		
81190	Basement, transformer vault	Transformer 850-INH4; oil from large tank	27	2C(25)		
81191	Basement, transformer vault	Transformer 850-INH4; oil from small sealed side tank	490	1C(460)		

 ppm_w parts per million by weight

- 1 Polychlorinated biphenyl concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD). Aroclor 1016, 1221, 1232, 1248, 1254 and 1260 also tested. All results below reporting levels, unless
- 2 noted.

1C: Confirmation concentration reported from first column quantification.2C: Confirmation concentration reported from second column quantification.

Sample				Calculated Concentration	Calculated Limit of Quantification
ID	Location	Description	Analyte	μg/sq. ft.	μg/sq. ft.
81184	Floor 17,	Roof access	Antimony	23	0.78
	stair 2 east	hatch, vertical	Beryllium	0.04	0.02
		edge, wipe	Cadmium	1.1	0.07
		area of	Chromium	8.2	1.9
		0.7 sq. ft.	Cobalt	BRL	0.81
			Copper	60.5	0.86
			Iron	1,584	3.2
			Lead	37.4	0.81
			Manganese	18.7	0.19
			Molybdenum	1.7	0.92
			Nickel	1.2	0.35
			Vanadium	8.1	0.92
			Zinc	648	1.7
81187	Floor 17,	Vertical wall	Antimony	1	0.54
	stair 2 east	(above light	Beryllium	BRL	0.01
		switch), wipe	Cadmium	BRL	0.05
		area of	Chromium	BRL	1.3
		1 sq. ft.	Cobalt	BRL	0.56
			Copper	7.6	0.6
			Iron	20	2.2
			Lead	BRL	0.56
			Manganese	0.38	0.13
			Molybdenum	BRL	0.64
			Nickel	BRL	0.24
			Vanadium	BRL	0.64
			Zinc	6.7	1.2
81193	Floor 17,	Roof access	Antimony	7.4	0.97
	stair 1 west	hatch, vertical	Beryllium	BRL	0.02
		edge, wipe	Cadmium	0.58	0.09
		area of	Chromium	4.5	2.3
		0.6 sq. ft.	Cobalt	BRL	1.0
			Copper	11	1.1
			Iron	1,782	3.96
			Lead	19.8	1.0
			Manganese	10.8	0.2
			Molybdenum	BRL	1.2
			Nickel	1.6	0.43
			Vanadium	4.5	1.2
			Zinc	540	2.2

Table C.2	Results of Analysis for Trace Metals in Wipe Samples Collected at One Broadway,
	Cambridge, Massachusetts, December 10, 2006

Table C.	Table C.2 Continued				
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.
81196	Floor 17.	Vertical wall	Antimony	BRL	0.54
01100	stair 1 west	across from	Bervllium	BRL	0.01
		janitor's	Cadmium	BRL	0.05
		closet, wipe	Chromium	BRL	1.3
		area of	Cobalt	BRL	0.56
		1 sq. ft.	Copper	BRL	0.6
			Iron	3.2	2.2
			Lead	BRL	0.56
			Manganese	BRL	0.13
			Molybdenum	BRL	0.64
			Nickel	BRL	0.24
			Vanadium	BRL	0.64
			Zinc	2	1.2
81199	Floor 5,	Underside	Antimony	2.4	0.86
	stair 2 east	mid-floor	Beryllium	BRL	0.02
		landing, wipe	Cadmium	BRL	0.08
		area of	Chromium	2.1	2.08
		0.6 sq. ft.	Cobalt	24	0.90
			Copper	32	0.96
			Iron	36.8	3.5
			Lead	2.9	0.9
			Manganese	1.3	0.2
			Molybdenum	BRL	1.0
			Nickel	BRL	0.38
			Vanadium	BRL	1.0
			Zinc	41.6	1.9
81202	Floor 5	Vertical wall	Antimony	BRL	0.54
	hallway by	across from	Beryllium	BRL	0.01
	stair 2 east	janitor's	Cadmium	BRL	0.05
		closet, wipe	Chromium	BRL	1.3
		1 sq ft	Cobalt	BRL	0.56
		1 54. 11.	Copper	1.4	0.6
			Iron	9.4	2.2
			Lead	BRL	0.56
			Manganese	BRL	0.13
			Molybdenum	BRL	0.64
				BKL	0.24
			vanadium	BKL	0.64
1		1	∣∠INC	2.4	1.2

Table C.	Table C.2 Continued				
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.
81205	Floor 1.	Vertical wall	Antimony	11.4	0.71
	stair 2 east	adjacent to	Bervllium	BRL	0.02
		door, wipe	Cadmium	1.1	0.06
		area of	Chromium	BRL	1.7
		0.8 sq. ft.	Cobalt	BRL	0.73
			Copper	196.4	0.79
			Iron	51.1	2.9
			Lead	4.2	0.73
			Manganese	2.6	0.17
			Molybdenum	BRL	0.84
			Nickel	0.34	0.31
			Vanadium	BRL	0.84
			Zinc	98.2	1.6
81208	Floor 1,	Stairwell	Antimony	7,200	11.1
	stair 2 east	ventilation grill, wipe area	Beryllium	BRL	0.27
			Cadmium	802.2	0.99
		of 0.05 sq. ft.	Chromium	88.5	26.7
			Cobalt	BRL	11.5
			Copper	11,314.3	12.3
			Iron	20,571.4	45.2
			Lead	2,262.9	11.5
			Manganese	617.1	2.7
			Molybdenum	BRL	13.1
			Nickel	12.3	4.9
			Vanadium	35	13.2
			Zinc	9,874.3	24.7
81211	Basement	Panel above	Antimony	1,056	5.2
	switch	electrical box	Beryllium	BRL	0.12
	room	switchgear	Cadmium	547.2	0.46
		cabinet, wipe	Chromium	12.5	12.5
		0 1 sq ft	Cobalt	18.2	5.4
		0.1 34.11.	Copper	4,608	5.8
			Iron	4,032	21.1
			Lead	624	5.4
			Manganese	1/2.8	1.3
			Molybdenum	BRL	6.1
					2.3
				BKL	6.1
1			∣∠INC	3,936	11.5

Table C.2 Continued					
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.
81375	Field blank	Ghost wipe	Antimony	BRL	0.54 µg/sample
			Beryllium	BRL	0.013 μg/sample
			Cadmium	BRL	0.048 μg/sample
			Chromium	BRL	1.3 µg/sample
			Cobalt	BRL	0.56 μg/sample
			Copper	BRL	0.60 μg/sample
			Iron	BRL	2.2 μg/sample
			Lead	BRL	0.56 μg/sample
			Manganese	BRL	0.13 μg/sample
			Molybdenum	BRL	0.64 μg/sample
			Nickel	BRL	0.24 μg/sample
			Vanadium	BRL	0.64 μg/sample
			Zinc	1.7 μg/sample	1.2 μg/sample
μg/sq. ft.micrograms per square footsq. ft.square footBRLbelow reporting limitμg/samplemicrograms per sampleSamples analyzed by Groundwater Analytical, Inc. Buzzards Bay, Massachusetts, using U.S.					

Samples analyzed by Groundwater Analytical, Inc, Buzzards Bay, Massachusetts, using U.S. Environmental Protection Agency (EPA) Method 6010B as referenced under Test Methods for Evaluating Solid Waste, EPA SW-846, Third Edition, Update III (1996).

Sample ID	81185	81188	81194	81197	81200
Location	Floor 17, stair 2 east	Floor 17, stair 2 east	Floor 17, stair 1 west	Floor 17, stair 1 west	Floor 5, stair 2 east
Sample Description	Roof access hatch,	Vertical wall above	Roof access hatch,	Vertical wall, below	Underside mid-floor
	vertical edge, wipe	light switch, wipe	vertical edge, wipe	fire alarm, wipe area	landing, wipe area of
	area of 0.7 sq. ft.	area of 1 sq. ft.	area of 0.6 sq. ft.	of 1 sq. ft.	0.6 sq. ft.
Analyte		Calcula	ated Concentration (µg	/sq. ft.)	
Naphthalene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
2-Methylnaphthalene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Acenaphthylene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Acenaphthene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Fluorene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Phenanthrene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Anthracene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Fluoranthene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Pyrene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Benzo(a)anthracene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Chrysene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Benzo(b)fluoranthene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Benzo(k)fluoranthene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Benzo(a)pyrene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Indeno(1,2,3-cd)pyrene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Dibenzo(a,h)anthracene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8
Benzo(g,h,i)perylene	BRL <7.2	BRL <5	BRL <9	BRL <5	BRL <8

 Table C.3
 Results of Surface Wipes for Polycyclic Aromatic Hydrocarbons from One Broadway, Cambridge, Massachusetts, December 10, 2006

Table C.3 Continued					
Sample ID	81203	81206	81209	81212	81376
Location	Floor 5, hallway by stair 2 east	Floor 1, stair 2 east	Floor 1, stair 2 east	Basement switch room	Field blank
Sample Description	Vertical wall across janitor's closet, wipe area of 1 sq. ft.	Vertical wall adjacent to door, wipe area of 0.8 sq. ft.	Smoke ventilation grill, wipe area of 0.05 sq. ft.	Panel switchgear cabinet, across from transformer feed, wipe area of 0.1 sq. ft.	Hexane wipe
Analyte		Calcula	ated Concentration (μg/sq. ft.)	
Naphthalene	BRL <5	BRL <6.5	BRL <102.9	BRL <48	BRL <5 μg/wipe
2-Methylnaphthalene	BRL <5	BRL <6.5	BRL <102.9	BRL <48	BRL <5 μg/wipe
Acenaphthylene	BRL <5	BRL <6.5	205.7	BRL <48	BRL <5 μg/wipe
Acenaphthene	BRL <5	BRL <6.5	BRL <102.9	BRL <48	BRL <5 μg/wipe
Fluorene	BRL <5	BRL <6.5	226.3	BRL <48	BRL <5 μg/wipe
Phenanthrene	BRL <5	BRL <6.5	2,880	BRL <48	BRL <5 μg/wipe
Anthracene	BRL <5	BRL <6.5	699.4	BRL <48	BRL <5 μg/wipe
Fluoranthene	BRL <5	BRL <6.5	1,769.1	57.6	BRL <5 μg/wipe
Pyrene	BRL <5	BRL <6.5	1,625.1	67.2	BRL <5 μg/wipe
Benzo(a)anthracene	BRL <5	BRL <6.5	411.4	BRL <48	BRL <5 μg/wipe
Chrysene	BRL <5	BRL <6.5	349.7	BRL <48	BRL <5 μg/wipe
Benzo(b)fluoranthene	BRL <5	BRL <6.5	390.9	BRL <48	BRL <5 μg/wipe
Benzo(k)fluoranthene	BRL <5	BRL <6.5	BRL <102.9	BRL <48	BRL <5 μg/wipe
Benzo(a)pyrene	BRL <5	BRL <6.5	288	BRL <48	BRL <5 μg/wipe
Indeno(1,2,3-cd)pyrene	BRL <5	BRL <6.5	185.1	BRL <48	BRL <5 μg/wipe
Dibenzo(a,h)anthracene	BRL <5	BRL <6.5	BRL <102.9	BRL <48	BRL <5 μg/wipe
Benzo(g,h,i)perylene	BRL <5	BRL <6.5	164.6	BRL <48	BRL <5 μg/wipe

sq. ft. square foot

μg/sq. ft. BRL micrograms per square foot below reporting limit

μ**g/wipe** micrograms per wipe

Concentration calculated based on wipe surface area.

Samples were analyzed by Groundwater Analytical, Inc. (Buzzards Bay, Massachusetts) using U.S. Environmental Protection Agency Method 8270C. The laboratory reporting limit was 5 µg per wipe per analyte. Individual detection limits may vary based on surface area of wipe sample.

		,			
Sample ID	Floor	Stairwell	Description	Calculated Aroclor 1254 ^{1,2} (μg/100 cm ²)	Notes
81186	17	East	Roof access hatch, vertical edge, wipe area of 0.7 sq. ft.	0.2	2C(0.2)
81189	17	East	Vertical wall, above light switch, wipe area of 1 sq. ft.	BRL <0.1	NA
81195	17	West	Roof access hatch, vertical edge, wipe area of 0.6 sq. ft.	0.2	2C(0.2)
81198	17	West	Vertical wall, below fire alarm, wipe area of 1 sq. ft.	BRL <0.1	NA
81201	5	East	Underside mid-floor landing, wipe area of 0.6 sq. ft.	BRL <0.2	NA
81204	5		Vertical wall across from janitor's closet, wipe area of 1 sq. ft.	BRL <0.1	NA
81207	1	East	Vertical wall adjacent to door, wipe area of 0.8 sq. ft.	BRL <0.1	NA
81210	1	East	Stairwell ventilation grill, wipe area of 0.05 sq. ft.	35.4*	2C(28.8)
81373	Basement	NA	Panel switchgear cabinet, across from transformer feed, wipe area of 0.1 sq. ft.	2.5*	2C(2.2)
81377	NA	NA	Field blank	BRL <1 μg/wipe	NA

Table C.4	Results of Wipe Samples for Polychlorinated Biphenyls from One Broadway, Cambridge,
	Massachusetts, December 10, 2006

 μ g/100 cm² micrograms per 100 square centimeters

sq. ft. square foot

BRL below reporting limit

NA not applicable

μg/wipe micrograms per wipe

¹ Polychlorinated biphenyl concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD).

² Aroclor 1016, 1221, 1232, 1242, 1248, and 1260 also tested. All results below reporting levels, unless noted.
 * Aroclor 1260

2C: Confirmation concentration reported from second column quantification.

Sample ID	Location	Description	Analyte	Calculated Concentration	Calculated Limit of Quantification
81380	Basement	Fresh air	Antimony	380	<u>1</u> 1
01000	Busement	supply duct	Bervllium	0.05	0.03
		for vault, duct	Cadmium	31	0.00
		bottom, wipe	Chromium	9.9	2.6
		of 1 sq. ft.	Cobalt	0.6	1.1
			Copper	560	1.8
			Iron	5,200	4.4
			Lead	170	1.1
			Manganese	50	0.3
			Molybdenum	1.3	1.3
			Nickel	0.5	0.5
			Vanadium	9.4	1.3
			Zinc	290	2.4
81383	Not	Field blank	Antimony	BRL	0.54 μg/sample
	applicable		Beryllium	BRL	0.013 μg/sample
			Cadmium	BRL	0.048 μg/sample
			Chromium	BRL	1.3 μg/sample
			Cobalt	BRL	0.56 μg/sample
			Copper	0.89	0.60 μg/sample
			Iron	9.7	2.2 μg/sample
			Lead	BRL	0.56 µg/sample
			Manganese	BRL	0.13 µg/sample
			Molybdenum	BRL	0.64 µg/sample
			Nickel	BRL	0.24 µg/sample
			Vanadium	BRL	0.64 µg/sample
			Zinc	5.3	1.2 μg/sample

Table C.5	Results of Analysis for Trace Metals in Wipe Samples Collected at One Broadway,
	Cambridge, Massachusetts, December 11, 2006

BRL below reporting limit

micrograms per sample μg/sample

Samples analyzed by Groundwater Analytical, Inc, Buzzards Bay, Massachusetts, using U.S. Environmental Protection Agency (EPA) Method 6010B as referenced under Test Methods for Evaluating Solid Waste, EPA SW-846, Third Edition, Update III (1996).

Sample ID	81379	81382
Location	Basement, mechanical room	Not applicable
Sample Description	Fresh air supply duct for vault,	Field blank
	duct bottom, 1 sq. ft.	
Analyte	Calculated Conce	entration (μg/sq. ft.)
Naphthalene	BRL <5	BRL <5 μg
2-Methylnaphthalene	BRL <5	BRL <5 μg
Acenaphthylene	BRL <5	BRL <5 μg
Acenaphthene	BRL <5	BRL <5 μg
Fluorene	BRL <5	BRL <5 μg
Phenanthrene	6	BRL <5 μg
Anthracene	BRL <5	BRL <5 μg
Fluoranthene	BRL <5	BRL <5 μg
Pyrene	BRL <5	BRL <5 μg
Benzo(a)anthracene	BRL <5	BRL <5 μg
Chrysene	BRL <5	BRL <5 μg
Benzo(b)fluoranthene	BRL <5	BRL <5 μg
Benzo(k)fluoranthene	BRL <5	BRL <5 μg
Benzo(a)pyrene	BRL <5	BRL <5 μg
Indeno(1,2,3-cd)pyrene	BRL <5	BRL <5 μg
Dibenzo(a,h)anthracene	BRL <5	BRL <5 μg
Benzo(g,h,i)perylene	BRL <5	BRL <5 µg

Table C.6 Results of Surface Wipes for Polycyclic Aromatic Hydrocarbons from One Broadway, Cambridge, Massachusetts, December 11, 2006

sq. ft. square foot

. μg/sq. ft. BRL micrograms per square foot

below reporting limit

micrograms μg

Concentration calculated based on wipe surface area.

Samples were analyzed by Groundwater Analytical, Inc. (Buzzards Bay, Massachusetts) using U.S. Environmental Protection Agency Method 8270C. The laboratory reporting limit was 5 μ g per wipe per analyte. Individual detection limits may vary based on surface area of wipe sample.

Table C.7	Wipe Sample Resu Cambridge, Massad	Its for Polychlorinated Biphenyls t chusetts, December 11, 2006	from One Broadway	,		
Sample ID	Floor	Description	Calculated Aroclor 1260 ^{1,2} (μg/100 cm ²)	Notes		
81378	Basement	Fresh air supply duct for vault, duct bottom, wipe of 1 sq. ft.	0.3	2C(0.2)		
81381	Basement	Field blank	BRL<1.0 μg	NA		
μg/100 cm ² sq. ft. BRL NA	μg/100 cm ² micrograms per 100 square centimeters sq. ft. square foot BRL below reporting limit NA not applicable					
 Polychlorinated biphenyls concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD). ² Aroclor 1016, 1221, 1232, 1242, 1248, and 1254 also tested. All results below reporting levels, unless noted. 						
2C: Confirm	ation concentration rep	ported from second column quantifica	ation.			

				Calculated Concentration	Calculated Limit of Quantification
Sample ID	Location	Description	Analyte	μg/sq. ft.	μ g/sq. ft.
81546	Basement,	Filter box	Antimony	53.8	1.1
AHU	AHU 5/6	(upstream),	Beryllium	0.12	0.03
		wipe area of	Cadmium	9.6	0.10
		0.5 sq. ft.	Chromium	18.1	2.6
			Cobalt	BRL	1.1
			Copper	172.5	1.8
			Iron	14,150.9	4.4
			Lead	21.9	1.1
			Manganese	97.7	0.3
			Molybdenum	3.8	1.3
			Nickel	0.58	0.48
			Vanadium	14.7	1.3
			Zinc	1,534.7	2.4
81548	Basement,	Cleaned	Antimony	12.2	1.1
	transformer vault	concrete wall, wipe area of 0.5 sq. ft.	Beryllium	BRL	0.03
			Cadmium	2.4	0.10
			Chromium	3.4	2.6
			Cobalt	BRL	1.1
			Copper	617.9	1.8
			Iron	418.5	4.4
			Lead	12.8	1.1
			Manganese	6	0.3
			Molybdenum	BRL	1.3
			Nickel	BRL	0.48
			Vanadium	BRL	1.3
			Zinc	147.5	2.4
81550	Basement,	Switchgear	Antimony	4	1.1
	switchgear	room cleaned	Beryllium	BRL	0.03
	room	panel, wipe	Cadmium	4	0.10
		area or	Chromium	BRL	2.6
		0.5 sq. π.	Cobalt	BRL	1.1
			Copper	99.7	1.8
			Iron	49.8	4.4
			Lead	41.9	1.1
			Manganese	1.1	0.3
			Molybdenum	BRL	1.3
			Nickel	BRL	0.48
			Vanadium	BRL	1.3
			Zinc	59.8	24

Table C.8Pre-Cleaning Results of Analysis for Trace Metals in Wipe Samples Collected at
One Broadway, Cambridge, Massachusetts, December 13, 2006

Table C.8 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
81552	Basement.	Horizontal	Antimony	1.350	1.2	
	switchgear	switchgear	Bervllium	0.36	0.03	
	room	panel	Cadmium	877.5	0.11	
		uncleaned	Chromium	18.5	2.9	
		surface (feed	Cobalt	3.15	1.3	
		to fifth floor),	Copper	1,440	1.5	
	wipe area of	Iron	922.5	5.0		
		0.4 sq. ft.	Lead	1,260	1.3	
			Manganese	382.5	0.3	
			Molybdenum	BRL	1.4	
			Nickel	20.7	0.54	
			Vanadium	65.25	1.4	
			Zinc	13,275	2.7	
81554	Basement,	Floor by door	Antimony	72	0.54	
	between switch/	of switchgear room, wipe	Beryllium	0.02	0.01	
			Cadmium	6.9	0.05	
	telecom	area of	Chromium	4.3	1.3	
	room	1 sq. ft.	Cobalt	1.1	0.56	
			Copper	380	0.6	
			Iron	2,900	2.2	
			Lead	21	0.56	
			Manganese	40	0.13	
			Molybdenum	0.66	0.64	
			Nickel	1.8	0.24	
			Vanadium	2.6	0.64	
			Zinc	370	1.2	
81556	Basement,	Access hatch,	Antimony	78.8	1.2	
	air intake	wipe area of	Beryllium	0.32	0.03	
	overhead	0.4 sq. ft.	Cadmium	24.8	0.11	
	access		Chromium	18.5	2.9	
	natch		Cobalt	2.5	1.3	
			Copper	47.3	1.5	
			Iron	96,750	5.0	
			Lead	175.5	1.3	
			Manganese	292.5	0.3	
			Molybdenum	4.7	1.4	
			Nickel	3.8	0.54	
			Vanadium	42.8	1.4	
			Zinc	1,642.5	2.7	

Table C.8 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
81557	Basement.	Uncleaned	Antimony	2.250	1.2	
	vault room	vault room,	Bervllium	0.09	0.03	
		wipe area of	Cadmium	222.8	0.11	
		0.4 sq. ft.	Chromium	21.8	2.9	
			Cobalt	1.7	1.3	
			Copper	945	1.5	
			Iron	7,425	5.0	
			Lead	2.250	1.3	
			Manganese	225	0.3	
			Molybdenum	BRL	1.4	
			Nickel	11	0.54	
			Vanadium	15	1.4	
			Zinc	4,950	2.7	
81560	First floor,	Floor area,	Antimony	7.2	1.2	
	hallway	wipe area of	Beryllium	BRL	0.03	
	from stairs	0.4 sq. ft.	Cadmium	2.5	0.11	
	to lobby		Chromium	BRL	2.9	
			Cobalt	BRL	1.3	
			Copper	130.5	1.5	
			Iron	222.8	5.0	
			Lead	8.1	1.3	
			Manganese	4.5	0.3	
			Molybdenum	BRL	1.4	
			Nickel	0.63	0.54	
			Vanadium	BRL	1.4	
			Zinc	81	2.7	
81562	Sixteenth	Elevator down	Antimony	BRL	1.2	
	floor,	button, south	Beryllium	BRL	0.03	
	elevator	wall, wipe	Cadmium	BRL	0.11	
	lobby	area of	Chromium	BRL	2.9	
		0.4 sq. ft.	Cobalt	BRL	1.3	
			Copper	13.7	1.5	
			Iron	27	5.0	
			Lead	1.7	1.3	
			Manganese	20	0.3	
			Molybdenum	BRL	1.4	
			Nickel	1.9	0.54	
			Vanadium	BRL	1.4	
			Zinc	13.5	2.7	

Table C.8 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
81564	Sixteenth	Duplicate	Antimony	BRL	1.2	
	floor,	81562, wipe	Beryllium	BRL	0.03	
	elevator	area of	Cadmium	BRL	0.11	
	lobby	0.4 sq. ft.	Chromium	BRL	2.9	
			Cobalt	BRL	1.3	
			Copper	3.4	1.5	
			Iron	19.4	5.0	
			Lead	BRL	1.3	
			Manganese	0.34	0.3	
			Molybdenum	BRL	1.4	
			Nickel	BRL	0.54	
			Vanadium	BRL	1.4	
			Zinc	5.9	2.7	
81566	Not	Field blank	Antimony	BRL	0.54 µg/sample	
	applicable		Beryllium	BRL	0.013 μg/sample	
			Cadmium	BRL	0.048 µg/sample	
			Chromium	BRL	1.3 μg/sample	
			Cobalt	BRL	0.56 μg/sample	
			Copper	BRL	0.60 μg/sample	
			Iron	BRL	2.2 μg/sample	
			Lead	BRL	0.56 μg/sample	
			Manganese	BRL	0.13 µg/sample	
			Molybdenum	BRL	0.64 µg/sample	
			Nickel	BRL	0.24 µg/sample	
			Vanadium	BRL	0.64 µg/sample	
			Zinc	4.3 μg/sample	1.2 μg/sample	
μg/sq. ft.micrograms per square footAHUair handling unitBRLbelow reporting limitμg/samplemicrograms per sample						

Samples analyzed by Liberty Mutual Industrial Hygiene Laboratory, Hopkinton, Massachusetts, using U.S. Occupational Safety and Health Administration ID-121.

Sample ID	Floor	Location	Description	Calculated Aroclor 1260 ^{1,2} (µg/100 cm ²)	Notes
81547	Basement	Transformer vault	Cleaned concrete wall, wipe area 0.5 sq. ft.	BRL <0.21	
81549	Basement	Switchgear room	Cleaned panel, wipe area 0.5 sq. ft.	BRL <0.21	
81551	Basement	Switchgear room	Uncleaned surface, horizontal switchgear panel (feed to fifth floor), wipe area 0.4 sq. ft.	8.5	2C(7.5)
81553	Basement	Hallway between switchgear and telecom rooms	Floor by door to switchgear room, wipe area 1 sq. ft.	BRL <0.11	
81559	One	Hallway from stairs to lobby	Floor area, wipe area 0.4 sq. ft.	0.46	2C(0.41)
81565	NA	NA	Field blank	BRL <1.0 μg/wipe	

Table C.9 Wipe Sample Results for Polychlorinated Biphenyls from One Broadway, Cambridge, Massachusetts, December 13, 2006

BRL below reporting limit

not applicable NA

μg/wipe micrograms per wipe

1 Polychlorinated biphenyls concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD).

2 Aroclor 1016, 1221, 1232, 1242, 1248, and 1254 also tested. All results below reporting levels, unless noted.

2C: Confirmation concentration reported from second column quantification.

Table C.10 Results of Surface Wipes for Dioxins from One Broadway, Cambridge, Massachusetts, December 13 and 14, 2006							
Sample ID	81385	81386	81387	81388	81389		
Location	Stairwell 2, east,	Stairwell 2, east,	Stairwell 2, east,	Stairwell 2, east,	Stairwell 2, east,		
	seventeenth floor	thirteenth floor	fifth floor	third floor	first floor		
Sample Description	Surface of metal frame	Sprinkler riser pipe,	Exterior bottom lip of	Sprinkler riser pipe,	Grill surface, stairwell		
	on ceiling under	top of valve, 0.3 sq. ft.	stairs, above landing,	top of valve, 0.3 sq. ft.	ventilation system,		
	exhaust grill, 0.8 sq. ft.		0.2 sq. ft.		0.05 sq. ft.		
Dioxin Homologs		Calcu	Ilated Concentration (n	g/m ⁻)			
TCDD	1.771	0.073	4.046	2.549	4,046.589		
PeCDD	5.127	0.540	7.195	4.918	5,850.193		
HxCDD	8.467	2.200	11.307	8.758	7,782.851		
HpCDD	26.887	8.036	13.267	15.087	5,882.149		
Total Dioxins	42.252	10.849	35.815	31.312	23,561.781		
Furans Homologs							
TCDF	25.841	8.144	68.813	35.796	39,359.653		
PeCDF	36.401	6.363	60.492	39.404	17,599.685		
HxCDF	29.866	5.285	46.997	29.961	19,855.779		
HpCDF	16.043	3.584	22.235	15.489	11,910.926		
Total Furans	108.150	23.376	198.538	120.650	88,726.043		
WHO TEQs							
2,3,7,8- TCDD	0.049	BRL	0.102	0.062	48.272		
1,2,3,7,8-PeCDD	0.234	0.086	0.391	0.249	239.143		
1,2,3,4,7,8-HxCDD	0.024	BRL	0.035	0.025	27.679		
1,2,3,6,7,8-HxCDD	0.063	0.023	0.074	0.061	38.750		
1,2,3,7,8,9-HxCDD	0.050	0.013	0.069	0.099	76.393		
1,2,3,4,6,7,8-HpCDD	0.137	0.039	0.059	0.071	25.243		
	0.008	0.001	0.001	0.002	0.288		
2,3,7,8- TCDF	0.660	0.157	1.545	0.833	806.002		
1,2,3,7,8-PeCDF	0.103	0.015	0.208	0.087	69.086		
2,3,4,7,8-PeCDF	2.041	0.316	3.761	2.507	1,740.432		
1,2,3,4,7,8-HxCDF	0.824	0.126	1.364	0.787	600.073		
1,2,3,6,7,8-HxCDF	0.265	0.041	0.431	0.257	161.200		
2,3,4,6,7,8-HxCDF	0.022	BRL	0.029	0.019	4.340		
1,2,3,7,8,9-HxCDF	0.346	0.053	0.522	0.367	200.172		
1,2,3,4,6,7,8-HpCDF	0.088	0.018	0.126	0.085	67.314		
1,2,3,4,7,8,9-HpCDF	0.016	0.003	0.026	0.020	14.769		
OCDF	0.001	BRL	0.001	0.001	0.489		
Total WHO TEQs	4.929	0.892	8.744	5.532	4,119.645		

Г

Table C.10 Continued					
Sample ID	81390	81545	81557	81561	81563
Location	Not applicable	Basement AHU 5/6	Basement vault	Sixteenth floor	Sixteenth floor
			<u> </u>	elevator lobby	elevator lobby
Sample Description	Field blank (ng)	Wipe of uncleaned	Uncleaned wall	Elevator south wall,	Duplicate 81561,
		fliter box, 0.5 sq. ft.	surface, 0.4 sq. ft.		0.4 sq. ft.
Dioxin Homologs		Calc	culated Concentration (n	g/m²)	
TCDD	BRL <0.000	1.933	62.392	0.033	BRL
PeCDD	BRL <0.001	3.311	101.201	0.112	0.128
HxCDD	BRL <0.001	10.551	101.040	0.486	0.684
HpCDD	BRL <0.001	19.609	77.992	1.994	0.089
Total Dioxins		35.403	342.626	2.624	0.901
Furans Homologs					
TCDF	BRL <0.002	12.215	1,366.033	2.442	0.124
PeCDF	BRL <0.001	41.776	831.039	2.175	0.110
HxCDF	BRL <0.001	21.073	497.527	1.222	0.064
HpCDF	BRL <0.001	11.596	159.294	0.754	BRL
Total Furans		86.660	2,853.893	6.594	0.298
WHO TEQs					
2,3,7,8- TCDD	BRL < 0.000	0.176	1.087	BRL	BRL
1,2,3,7,8-PeCDD	BRL <0.001	0.538	4.020	0.042	BRL
1,2,3,4,7,8-HxCDD	BRL <0.001	BRL	0.320	BRL	BRL
1,2,3,6,7,8-HxCDD	BRL <0.001	0.102	0.564	0.008	BRL
1,2,3,7,8,9-HxCDD	BRL <0.001	0.104	1.242	0.007	BRL
1,2,3,4,6,7,8-HpCDD	BRL <0.001	0.091	0.344	0.009	0.004
OCDD	BRL < 0.001	0.003	0.004	BRL	BRL
2,3,7,8- TCDF	BRL <0.002	0.839	28.578	0.079	0.009
1,2,3,7,8-PeCDF	BRL <0.001	0.081	1.887	0.005	BRL
2,3,4,7,8-PeCDF	BRL <0.001	2.424	62.242	0.169	0.016
1,2,3,4,7,8-HxCDF	BRL <0.001	0.605	11.988	0.028	0.002
1,2,3,6,7,8-HxCDF	BRL <0.001	0.205	3.875	0.010	BRL
2,3,4,6,7,8-HxCDF	BRL < 0.001	BRL	0.404	BRL	BRL
1,2,3,7,8,9-HxCDF	BRL <0.001	0.322	6.321	0.017	0.002
1,2,3,4,6,7,8-HpCDF	BRL <0.001	0.061	0.913	0.003	0.001
1,2,3,4,7,8,9-HpCDF	BRL < 0.001	0.013	0.219	0.001	BRL
OCDF	BRL < 0.001	0.001	0.007	BRL	BRL
Total WHO TEQs		5.567	124.017	0.378	0.033

Table C.	Table C.10 Continued					
sq. ft. ng/m ² TCDD PeCDD HxCDD HpCDD TCDF PeCDF HxCDF HpCDF WHO TEQ BRL OCDD OCDF	square foot nanograms per square meter tetrachlorodibenzo-p-dioxin pentachlorodibenzo-p-dioxin hexachlorodibenzo-p-dioxin tetrachlorodibenzo-p-dioxin tetrachlorodibenzofuran pentachlorodibenzofuran hexachlorodibenzofuran heptachlorodibenzofuran World Health Organization toxic equivalent below reporting limit octadibenzodioxin octadibenzofuran					
Samples analyzed by Columbia Analytical Services (Houston, Texas) using U.S. Environmental Protection Agency Method 8290.						

	Cambridge, Massachusetts, December 17, 2006					
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
81590	Intake into	Wipe area	Antimony	64.8	1.0	
	vault, floor of	0.6 sq. ft.	Bervllium	BRL	0.02	
	duct		Cadmium	15.3	0.1	
			Chromium	4.9	2.3	
			Cobalt	BRL	1.0	
			Copper	774	1.1	
			Iron	11,700	4.0	
			Lead	153	1.0	
			Manganese	41.4	0.2	
			Molybdenum	BRL	1.2	
			Nickel	0.5	0.4	
			Vanadium	5	1.2	
			Zinc	1,620	2.2	
81592	Main trunk	Overhead	Antimony	22.9	1.4	
	(air intake)	access panel	Beryllium	0.1	0.0	
		near planter,	Cadmium	0.3	0.1	
		wipe area	Chromium	15.7	3.3	
		0.4 sq. ft.	Cobalt	BRL	1.4	
			Copper	BRL	1.5	
			Iron	25,714.3	5.7	
			Lead	3.1	1.4	
			Manganese	133.7	0.3	
			Molybdenum	2.8	1.6	
			Nickel	BRL	0.6	
			Vanadium	20.1	1.6	
			Zinc	21,85.7	3.1	
81593	Main trunk	Vertical surface	Antimony	BRL	0.8	
	(air intake)	of duct, wipe	Beryllium	BRL	0.02	
		area 0.7 sq. ft.	Cadmium	0.7	0.1	
			Chromium	BRL	1.9	
			Cobalt	BRL	0.8	
			Copper	BRL	0.9	
			Iron	532.8	3.2	
			Lead	72	0.8	
			Manganese	7.2	0.2	
			Molybdenum	BRL	0.9	
			Nickel	BRL	0.3	
			Vanadium	2.2	0.9	
			Zinc	691.2	1.7	

Table C.11Results of Analysis for Trace Metals in Wipe Samples Collected at One Broadway,
Cambridge, Massachusetts, December 17, 2006

Table C.11 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
81594	Main trunk	Damper for	Antimony	3	0.6	
	(air intake)	HV-1, wipe area	Beryllium	BRL	0.02	
	· · · ·	0.8 sq. ft.	Cadmium	0.8	0.1	
		-	Chromium	BRL	1.5	
			Cobalt	BRL	0.7	
			Copper	9.6	0.7	
			Iron	547.4	2.6	
			Lead	14.3	0.7	
			Manganese	7.5	0.2	
			Molybdenum	BRL	0.8	
			Nickel	BRL	0.3	
			Vanadium	1.4	0.8	
			Zinc	606.9	1.4	
81595	Main trunk	Damper for	Antimony	12	0.8	
	(air intake)	AHU 5/6, wipe	Beryllium	0.02	0.02	
		area 0.7 sq. ft.	Cadmium	4.5	0.1	
			Chromium	2.6	1.9	
			Cobalt	BRL	0.8	
			Copper	201.6	0.9	
			Iron	1,584	3.2	
			Lead	47.5	0.8	
			Manganese	13.8	0.2	
			Molybdenum	BRL	0.9	
			Nickel	0.7	0.3	
			Vanadium	5	0.9	
			Zinc	619.2	1.7	
81596	Main trunk	Vertical surface	Antimony	1.7	1.0	
	(air intake)	between	Beryllium	BRL	0.02	
		intakes for HV-1	Cadmium	1.3	0.1	
		and AHU 5/6,	Chromium	2.5	2.3	
		wipe area	Cobalt	BRL	1.0	
		0.6 sq. π.	Copper	1.1	1.1	
			Iron	774	4.0	
			Lead	109.8	1.0	
			Manganese	11.5	0.2	
			Molybdenum	BRL	1.2	
			Nickel	BRL	0.4	
			Vanadium	5.4	1.2	
			Zinc	1,116	2.2	

ted
of ation ft.
2
2
_
/

Table C.11 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
81600	Stairwell two	Wipe of cleaned	Antimony	3	0.6	
	(third floor)	above phone	Beryllium	BRL	0.0	
		jack and door,	Cadmium	0.8	0.1	
		wipe area	Chromium	BRL	1.5	
		0.9 sq. ft.	Cobalt	BRL	0.6	
			Copper	74.3	0.7	
			Iron	44.6	2.5	
			Lead	3.1	0.6	
			Manganese	1.5	0.1	
			Molybdenum	BRL	0.7	
			Nickel	BRL	0.3	
			Vanadium	BRL	0.7	
			Zinc	42.3	1.4	
81601	Stairwell two	Duplicate	Antimony	1.2	0.6	
	(third floor)	81600, wipe	Beryllium	BRL	0.01	
		area 0.9 sq. it.	Cadmium	0.2	0.1	
			Chromium	BRL	1.4	
			Cobalt	BRL	0.6	
			Copper	33.1	0.6	
			Iron	32	2.3	
			Manganese	1.5	0.0	
			Molybdenum	I.J BRI	0.7	
			Nickol	BRI	0.7	
			Vanadium	BRI	0.3	
			Zinc	30.9	1.3	
81602		Field blank	Antimony	<0.54 µg/wipe	0.54 µg/wipe	
			Bervllium	<0.01 µg/wipe	0.013 µg/wipe	
			Cadmium	<0.05 µg/wipe	0.048 µg/wipe	
			Chromium	<1.30 µg/wipe	1.3 μα/wipe	
			Cobalt	<0.56 µg/wipe	0.56 µg/wipe	
			Copper	<0.00 µg/wipe	0.60 µg/wipe	
			Iron	3.00 µg/wipe	2.2 ug/wine	
			Lead	<0.56 µg/wipe	0.56 µg/wipe	
			Manganese			
			Molybdenum		0.64 ug/wipe	
			Nickel			
			Vanadium	<0.64 µg/wipe		
			Zinc		1 2 μα/wipe	
		1	ZINC	∠.10 μg/wipe	1.∠ μg/wipe	

Table C.11Continued

 $\begin{array}{lll} \mu g/sq. \mbox{ ft. } & \mbox{micrograms per square foot} \\ BRL & \mbox{below reporting limit} \\ AHU & \mbox{air handling unit} \\ \mu g/wipe & \mbox{micrograms per wipe} \end{array}$

Samples analyzed by Liberty Mutual Industrial Hygiene Laboratory, Hopkinton, Massachusetts, using U.S. Occupational Safety and Health Administration ID-121.

Table C.12	Results of Surface Wipes for Dioxins from One Broadway, Cambridge,
	Massachusetts, December 19, 2006

Sample ID	80354	80359			
Location	First floor, stair 2 ventilation	Stair ventilation duct in			
	vents. 0.8 sq. ft.	basement, 0.3 sq. ft.			
Sample Description	Top of exterior	New access hatch above fan			
		box			
Dioxin Homologs	Calculated Concentration (ng/m ²)				
TCDD	3.276	21.87			
PeCDD	6.921	35.688			
HxCDD	9.010	44.306			
HpCDD	7.182	40.958			
Total Dioxins	26.389	142.826			
Furans Homologs					
TCDF	40.385	272.021			
PeCDF	43.408	224.111			
HxCDF	26.785	133.987			
HpCDF	13.343	65.265			
Total Furans	123.921	695.385			
WHO TEQs					
2,3,7,8- TCDD	0.000	0.424			
1,2,3,7,8-PeCDD	0.148	0.736			
1,2,3,4,7,8-HxCDD	0.027	0.137			
1,2,3,6,7,8-HxCDD	0.048	0.255			
1,2,3,7,8,9-HxCDD	0.102	0.405			
1,2,3,4,6,7,8-HpCDD	0.032	0.170			
OCDD	0.004	0.037			
2,3,7,8- TCDF	0.926	5.296			
1,2,3,7,8-PeCDF	0.096	0.478			
2,3,4,7,8-PeCDF	2.153	10.247			
1,2,3,4,7,8-HxCDF	0.746	3.668			
1,2,3,6,7,8-HxCDF	0.258	1.287			
2,3,4,6,7,8-HxCDF	0.310	1.455			
1,2,3,7,8,9-HxCDF	0.000	0.000			
1,2,3,4,6,7,8-HpCDF	0.083	0.403			
1,2,3,4,7,8,9-HpCDF	0.014	0.056			
OCDF	0.004	0.022			
Total WHO TEQs	4.949	25.078			
sq. ft. square foot ng/m ² nanograms per square TCDD tetrachlorodibenzo-p-did PeCDD pentachlorodibenzo-p-did HxCDD hexachlorodibenzo-p-did HpCDD heptachlorodibenzo-p-did TCDF tetrachlorodibenzofuran PeCDF pentachlorodibenzofuran Samples analyzed by Columbia Ar	meter HxCDF hexa oxin HpCDF hep ioxin WHO Wor oxin TEQ toxic ioxin BRL belo OCDD octa n OCDF octa nalytical Services (Houston, Texas)	achlorodibenzofuran cachlorodibenzofuran ld Health Organization c equivalent quotient w recording limit dibenzodioxin dibenzofuran using U.S. Environmental			
Samples analyzed by Columbia Analytical Services (Houston, Texas) using U.S. Environmental					

Protection Agency Method 8290.

Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μq/sq. ft.
80343	Roof	Left duct at	Antimony	17.6	1.9
00010	ventilation	roof wine	Bervllium	BRI	0.02
	exhaust	area	Cadmium	4	0.2
	system	0.3 sq. ft.	Chromium	BRL	4.7
	-		Cobalt	BRL	2.0
			Copper	61.2	2.2
			Iron	396	7.9
			Lead	61.2	2.0
			Manganese	9.7	0.5
			Molybdenum	BRL	2.3
			Nickel	BRL	0.9
			Vanadium	BRL	2.3
			Zinc	828	4.3
80344	Roof	Exhaust fan	Antimony	12	3.2
	ventilation exhaust	interior, wipe area 0.2 sq. ft.	Beryllium	BRL	0.1
			Cadmium	6.6	0.3
	system		Chromium	BRL	7.8
			Cobalt	BRL	3.4
			Copper	258	3.6
			Iron	54.6	13.2
			Lead	13.2	3.4
			Manganese	2.1	0.8
			Molybdenum	BRL	3.8
			Nickel	BRL	1.4
			Vanadium	BRL	3.8
			Zinc	108	7.2
80345	Stair one	Penthouse	Antimony	14.9	2.4
	exhaust	access	Beryllium	BRL	0.1
		panel, wipe	Cadmium	4.4	0.2
		area	Chromium	17.6	5.9
		0.2 Sq. II.	Cobalt	BRL	2.5
			Copper	193.5	2.7
			Iron	945	9.9
			Lead	225	2.5
			Manganese	12.2	0.6
			Molybdenum	BRL	2.9
			Nickel	1.3	1.1
			vanadium	BRL	2.9
1		1	IZINC	1.215	5.4

Table C.13Post-Cleaning Results of Analysis for Trace Metals in Wipe Samples Collected at
One Broadway, Cambridge, Massachusetts, December 19, 2006

Table C.13 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
80346	Stair two roof	Vent at top, wipe area 0.5 sq. ft.	Antimony	1.8	1.2	
	access panel,		Bervllium	BRL	0.02	
	seventeenth		Cadmium	0.6	0.1	
	floor		Chromium	BRL	2.8	
			Cobalt	BRL	1.2	
			Copper	30.5	1.3	
			Iron	65.5	4.8	
			Lead	2.6	1.2	
			Manganese	1.1	0.3	
			Molybdenum	BRL	1.4	
			Nickel	BRL	0.5	
			Vanadium	BRL	1.4	
			Zinc	19.6	2.6	
80347	Stair two	Wall above	Antimony	BRL	0.5	
	vertical wall,	light switch,	Beryllium	BRL	0.01	
	seventeenth	wipe area	Cadmium	BRL	0.0	
	floor	1.0 sq. ft.	Chromium	BRL	1.3	
			Cobalt	BRL	0.6	
			Copper	1.3	0.6	
			Iron	7.4	2.2	
			Lead	BRL	0.6	
			Manganese	0.2	0.1	
			Molybdenum	BRL	0.6	
			Nickel	BRL	0.2	
			Vanadium	BRL	0.6	
			Zinc	2.9	1.2	
80348	Stair one,	Above fire	Antimony	BRL	0.5	
	seventeenth	alarm	Beryllium	BRL	0.01	
	floor	vertical wall,	Cadmium	BRL	0.05	
		wipe area	Chromium	BRL	1.3	
		1.0 sq. it.	Cobalt	BRL	0.6	
			Copper	4.5	0.6	
			Iron	40	2.2	
			Lead	BRL	0.6	
			Manganese	0.5	0.1	
			Molybdenum	BRL	0.6	
			Nickel	BRL	0.2	
			Vanadium	BRL	0.6	
			Zinc	9.4	1.2	

Table C.13 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
80349	Stair one.	Vent at top	Antimony	BRL	1	
	seventeenth	of roof	Beryllium	BRL	0.02	
	floor	access,	Cadmium	3.6	0.1	
		wipe area	Chromium	BRL	2.3	
		0.6 sq. ft.	Cobalt	BRL	1.0	
			Copper	3.4	1.1	
			Iron	19.8	4.0	
			Lead	BRL	1	
			Manganese	0.3	0.2	
			Molybdenum	BRL	1.2	
			Nickel	BRL	0.4	
			Vanadium	BRL	1.2	
			Zinc	25.2	2.2	
80350	Stair two, fifth	Underside of	Antimony	BRL	1	
	floor	landing,	Beryllium	BRL	0.02	
		wipe area	Cadmium	BRL	0.1	
		0.6 sq. ft.	Chromium	BRL	2.3	
			Cobalt	39.6	1	
			Copper	BRL	1.1	
			Iron	5.8	4	
			Lead	BRL	1	
			Manganese	2	0.2	
			Molybdenum	BRL	1.2	
			Nickel	BRL	0.4	
			Vanadium	BRL	1.2	
			Zinc	16.2	2.2	
80351	Stair two	Across from	Antimony	BRL	0.5	
	vertical wall,	janitor's	Beryllium	BRL	0.01	
	fifth floor	closet, wipe	Cadmium	BRL	0.05	
		area	Chromium	BRL	1.3	
		1.0 sq. it.	Cobalt	BRL	0.6	
			Copper	0.9	0.6	
			Iron	7.3	2.2	
			Lead	BRL	0.6	
			Manganese	BRL	0.1	
			Molybdenum	BRL	0.6	
			Nickel	BRL	0.2	
			Vanadium	BRL	0.6	
			Zinc	3.6	1.2	

Table C.13 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
80352	Stair two	Left side of	Antimony	10.5	1.6	
	ventilation	exterior of	Beryllium	BRL	0.04	
	duct, first floor	duct, wipe area 0.3 sq. ft.	Cadmium	4.7	0.1	
			Chromium	7.3	3.8	
			Cobalt	BRL	1.6	
			Copper	241.5	1.7	
			Iron	61.1	6.4	
			Lead	165.8	1.6	
			Manganese	1.6	0.4	
			Molybdenum	BRL	1.9	
			Nickel	BRL	0.7	
			Vanadium	BRL	1.9	
			Zinc	552.7	3.5	
80355	Basement	Vault door,	Antimony	2.3	0.6	
	hallway	wipe area	Beryllium	BRL	0.01	
		0.9 sq. ft.	Cadmium	0.8	0.1	
			Chromium	BRL	1.5	
			Cobalt	BRL	0.6	
			Copper	148.6	0.7	
			Iron	46.9	2.5	
			Lead	3	0.6	
			Manganese	1.1	0.1	
			Molybdenum	BRL	0.7	
			Nickel	BRL	0.3	
			Vanadium	BRL	0.7	
	-		Zinc	20.6	1.4	
80356	Basement	Top of	Antimony	65.5	0.9	
	switch room	meters, wipe	Beryllium	BRL	0.02	
		area	Cadmium	29.5	0.1	
		0.6 sq. it.	Chromium	44.2	2.1	
			Cobalt	BRL	0.9	
			Copper	670.9		
			Iron	1,210.9	3.6	
			Lead	99.8	0.9	
			Manganese	16.4	0.2	
			Molybdenum	BRL		
				1.8	0.4	
			vanadium	2.5		
1			∠inc	425.5	2.0	

Table C.13 Continued						
Sample ID	Location	Description	Analyte	Calculated Concentration μg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.	
80357	Basement,	Above	Antimony	2.8	2.2	
	stairwell	square new	Beryllium	BRL	0.1	
	ventilation	access panel, wipe area	Cadmium	1.7	0.2	
	duct		Chromium	BRL	5.2	
			Cobalt	BRL	2.2	
		0.3 sq. ft.	Copper	72	2.4	
			Iron	32.4	8.8	
			Lead	14.8	2.2	
			Manganese	0.7	0.5	
			Molybdenum	BRL	2.6	
			Nickel	BRL	1	
			Vanadium	BRL	2.6	
			Zinc	800	4.8	
80360	Basement	Adjacent to	Antimony	15.2	1.1	
	fresh air	damper to	Beryllium	BRL	0.02	
	Intake duct	AHU 5/6,	Cadmium	3.8	0.1	
		wipe area	Chromium	BRL	2.6	
		0.5 Sq. II.	Cobalt	BRL	1.1	
			Copper	66	1.2	
			Iron	114	4.4	
			Lead	13.2	1.1	
			Manganese	2.6	0.3	
			Niekel	BRL	1.3	
			Vanadium		0.0	
			Zinc	460	1.3	
80361	Not	Field blank	Antimony	400	0.54 ug/wipo	
00001	applicable		Bervllium	$<0.04 \mu g/wipe$	0.04 µg/wipe	
			Cadmium	<0.01 µg/wipe	0.013 μg/wipe	
			Chromium	<0.00 µg/wipe	1.3 μα/wipe	
			Cobalt	<1.50 µg/wipe		
			Copper	<0.50 µg/wipe	0.50 μg/wipe	
			Iron	<0.00 µg/wipe	0.60 μg/wipe	
			Manganasa	<0.00 µg/wipe	0.00 μg/wipe	
			Molybdonum	<0.13 µg/wipe	0.13 μg/wipe	
			Niekel	<0.64 µg/wipe	0.64 µg/wipe	
				<0.24 µg/wipe	0.24 μg/wipe	
				<0.64 µg/wipe	0.64 μg/wipe	
1		1	∠inc	4.00 μg/wipe	1.2 ug/wipe	

Table C.13Continued

 $\begin{array}{ll} \mu g/sq. \mbox{ ft. } & \mbox{micrograms per square foot} \\ BRL & \mbox{below reporting limit} \\ \mu g/wipe & \mbox{micrograms per wipe} \end{array}$

Samples analyzed by Liberty Mutual Industrial Hygiene Laboratory, Hopkinton, Massachusetts, using U.S. Occupational Safety and Health Administration ID-121.
Table C.14Post Cleaning Wipe Sample Results for Polychlorinated Biphenyls from One Broadway, Cambridge, Massachusetts, December 19, 2006					
Sample ID	Floor	Stairwell	Description	Calculated Aroclor 1254 ^{1,2} (μg/100 cm ²)	Notes
80353	First	Two	Ventilation duct surface, wipe area 0.8 sq. ft.	BRL <0.13	NA
80358	Basement	NA	Ventilation duct access hatch, wipe area 0.3 sq. ft.	BRL <0.43	NA
 μg/100 cm² micrograms per 100 square centimeters sq. ft. square foot BRL below reporting limit NA not applicable ¹ Polychlorinated biphenyl concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD). ² Aroclor 1016, 1221, 1232, 1242, 1248, and 1260 also tested. All results below reporting levels, unless noted. 					

ſ

Sample ID	Location	Description	Analyte	Calculated Concentration µg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.
81890	Louver for	Wipe	Antimony	BRL	0.3
	AHU 5/6	sample	Beryllium	BRL	0.007
		1.7 sq. ft.	Cadmium	0.3	0.03
			Chromium	BRL	0.8
			Cobalt	BRL	0.3
			Copper	10.3	0.4
			Iron	32.1	1.3
			Lead	1.7	0.3
			Manganese	0.8	0.1
			Molybdenum	BRL	0.4
			Nickel	BRL	0.1
			Vanadium	BRL	0.4
			Zinc	139.2	0.7
81893	Air intake	Wipe	Antimony	BRL	0.5
	duct, vertical	sample	Beryllium	BRL	0.01
	surface	1.1 sq. ft.	Cadmium	0.3	0.04
			Chromium	BRL	1.1
			Cobalt	BRL	0.5
			Copper	4.5	0.5
			Iron	23.6	1.9
			Lead	8.7	0.5
			Manganese	0.5	0.1
			Molybdenum	BRL	0.6
			Nickel	BRL	0.2
			Vanadium	BRL	0.6
			Zinc	785.5	1.0
81896	Sixteenth	Wipe	Antimony	BRL	0.5
	floor, door for Liquid Bits	sample	Beryllium	BRL	0.01
		1 sq. ft.	Cadmium	BRL	0.05
			Chromium	BRL	1.3
			Cobalt	BRL	0.6
			Copper	1.1	0.6
			Iron	BRL	2.2
			Lead	BRL	0.6
			Manganese	BRL	0.1
			Molybdenum	BRL	0.6
			Nickel	0.3	0.2
			Vanadium	BRL	0.6
			Zinc	26	12

Table C.15Results of Analysis for Trace Metals in Wipe Samples Collected at One
Broadway, Cambridge, Massachusetts, December 29, 2006

Table C.15 Continued					
				Calculated	Calculated Limit
Sample			• • •	Concentration	of Quantification
ID	Location	Description	Analyte	μg/sq. ft.	μg/sq. ft.
81899	Eleventh	Wipe	Antimony	BRL	0.5
	floor, tell data	sample	Beryllium	BRL	0.01
	at stair 1	1 sq. ft.	Cadmium	BRL	0.04
			Chromium	BRL	1.3
			Cobalt	BRL	0.6
			Copper	BRL	0.6
			Iron	31	2.2
			Lead	BRL	0.6
			Manganese	0.8	0.1
			Molybdenum	BRL	0.6
			Nickel	BRL	0.2
			Vanadium	BRL	0.6
			Zinc	1.9	1.2
81902	Eighth floor,	Wipe	Antimony	BRL	0.8
	MIT/OCW	sample	Beryllium	BRL	0.02
		0.7 sq. ft.	Cadmium	BRL	0.1
			Chromium	BRL	2.0
			Cobalt	BRL	0.8
			Copper	1.1	0.9
			Iron	BRL	3.3
			Lead	BRL	0.8
			Manganese	BRL	0.2
			Molybdenum	BRL	1.0
			Nickel	BRL	0.4
			Vanadium	BRL	1.0
			Zinc	BRL	1.8
81905	Fifth floor,	Wipe	Antimony	BRL	0.3
	Thing Magic	sample	Beryllium	BRL	0.01
	counter	1.6 sq. ft.	Cadmium	0.1	0.03
			Chromium	BRL	0.8
			Cobalt	BRL	0.4
			Copper	5.3	0.4
			Iron	19.8	1.4
			Lead	0.5	0.4
			Manganese	0.5	0.1
			Molybdenum	BRL	0.4
			Nickel	0.3	0.2
			Vanadium	BRL	0.4
			Zinc	6.4	0.8

Table C.	15 Continued				
Sample ID	Location	Description	Analyte	Calculated Concentration µg/sq. ft.	Calculated Limit of Quantification μg/sq. ft.
81908	Third floor,	Wipe	Antimony	2.3	0.5
	Natural Std	sample	Beryllium	BRL	0.013
		1 sq. ft.	Cadmium	0.8	0.05
			Chromium	BRL	1.3
			Cobalt	BRL	0.6
			Copper	35	0.6
			Iron	17	2.2
			Lead	2.4	0.6
			Manganese	0.6	0.1
			Molybdenum	BRL	0.6
			Nickel	0.3	0.2
			Vanadium	BRL	0.6
			Zinc	21	1.2
81911	First floor,	Wipe	Antimony	5.6	0.5
	stair 2 grill	sample	Beryllium	BRL	0.01
		1 sq. ft.	Cadmium	3.4	0.05
			Chromium	BRL	1.3
			Cobalt	BRL	0.6
			Copper	110	0.6
			Iron	64	2.2
			Lead	48	0.6
			Manganese	1.5	0.1
			Molybdenum	BRL	0.6
			Nickel	BRL	0.2
			Vanadium	BRL	0.6
04040	Net	F ield blends		340	1.2
81912	NOT	Field blank	Antimony	<0.54 µg/wipe	0.54 μg/wipe
	applicable		Beryllium	<0.01 µg/wipe	0.013 µg/wipe
			Cadmium	<0.05 µg/wipe	0.048 µg/wipe
			Chromium	<1.30 µg/wipe	1.3 μg/wipe
			Cobalt	<0.56 µg/wipe	0.56 μg/wipe
			Copper	<0.60 µg/wipe	0.60 μg/wipe
			Iron	10.00 μg/wipe	2.2 μg/wipe
			Lead	<0.56 µg/wipe	0.56 μg/wipe
			Manganese	<0.13 µg/wipe	0.13 μg/wipe
			Molybdenum	<0.64 µg/wipe	0.64 μg/wipe
			Nickel	<0.24 µg/wipe	0.24 μg/wipe
			Vanadium	<0.64 µg/wipe	0.64 μg/wipe
			Zinc	5.00 μg/wipe	1.2 μg/wipe
μg/sq. ft. BRL μg/wipe	micrograms pe below recordin micrograms pe	r square foot g limit r wipe	<u>.</u>	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Samples analyzed by Liberty Mutual Industrial Hygiene Laboratory, Hopkinton, Massachusetts, using U.S. Occupational Safety and Health Administration ID-121.

Sample ID	Sample Description	Air Volume (liters)	Compound	Calculated Concentration (μg/m³)
81871	Outdoors	1,236	Antimony	BRL <0.22
		,	Beryllium	BRL <0.01
			Cadmium	BRL <0.02
			Chromium	BRL <0.54
			Cobalt	BRL <0.23
			Copper	BRL <0.24
			Iron	BRL <0.89
			Lead	BRL <0.23
			Manganese	BRL <0.05
			Molybdenum	BRL <0.26
			Nickel	BRL <0.10
			Vanadium	BRL <0.26
			Zinc	BRL <0.49
81875	Lobby	1,267	Antimony	BRL <0.21
			Beryllium	BRL <0.01
			Cadmium	BRL <0.02
			Chromium	BRL <0.53
			Cobalt	BRL <0.22
			Copper	BRL <0.24
			Iron	BRL <0.87
			Lead	BRL <0.22
			Manganese	BRL <0.05
			Molybdenum	BRL <0.25
			Nickel	BRL <0.09
			Vanadium	BRL <0.25
			Zinc	BRL <0.47
81876	Lobby (duplicate)	1,267	Antimony	BRL <0.21
			Beryllium	BRL <0.01
			Cadmium	BRL <0.02
			Chromium	BRL <0.53
			Cobalt	BRL <0.22
			Copper	BRL <0.24
			Iron	BRL <0.87
			Lead	BRL <0.22
			Manganese	BRL <0.05
			Molybdenum	BRL <0.25
			Nickel	BRL <0.09
			Vanadium	BRL <0.25
1			Zinc	BRI <0.47

Table C.16Results from Air Sampling for Metals at One Broadway, Cambridge,
Massachusetts, December 29, 2006

Table C.16 Continued				
Sample ID	Sample Description	Air Volume (liters)	Compound	Calculated Concentration (µg/m³)
81879	Basement hallway by	1,299	Antimony	BRL <0.21
	bathrooms		Beryllium	BRL <0.01
			Cadmium	BRL <0.02
			Chromium	BRL <0.52
			Cobalt	BRL <0.22
			Copper	BRL <0.23
			Iron	BRL <0.85
			Lead	BRL <0.22
			Manganese	BRL <0.05
			Molybdenum	BRL <0.25
			Nickel	BRL <0.09
			Vanadium	BRL <0.25
			Zinc	BRL <0.46
81880	Seventh floor elevator	1,302	Antimony	BRL <0.21
	lobby		Beryllium	BRL <0.01
			Cadmium	BRL <0.02
			Chromium	BRL <0.51
			Cobalt	BRL <0.22
			Copper	BRL <0.23
			Iron	BRL <0.84
			Lead	BRL <0.22
			Manganese	BRL <0.05
			Molybdenum	BRL <0.25
			Nickel	BRL <0.09
			Vanadium	BRL <0.25
			Zinc	BRL <0.46
81887	Fifth floor stairwell two	Pump fault	Antimony	BRL <0.27 μg
	lobby		Beryllium	BRL <0.01 μg
			Cadmium	BRL <0.02 μg
			Chromium	BRL <0.67 μg
			Cobalt	BRL <0.28 μg
			Copper	1.10 µg
			Iron	BRL <1.10 μα
			Lead	BRL <0.28 µg
			Manganese	BRL <0.07 µg
			Molvbdenum	BRL <0.32 µg
			Nickel	BRL <0.12 µg
			Vanadium	BRI 20.32 µg
			Zinc	BRL <0.60 µg

Table C.16 Continued				
Sample ID	Sample Description	Air Volume (liters)	Compound	Calculated Concentration (µg/m³)
81872	Field blank	NA	Antimony	BRL <0.27 μg
			Beryllium	BRL <0.01 μg
			Cadmium	BRL <0.02 μg
			Chromium	BRL <0.67 μg
			Cobalt	BRL <0.28 μg
			Copper	0.37 μg
			Iron	2.10 μg
			Lead	BRL <0.28 μg
			Manganese	BRL <0.07 μg
			Molybdenum	BRL <0.32 μg
			Nickel	BRL <0.12 μg
			Vanadium	BRL <0.32 μg
			Zinc	BRL <0.60 μg
ua/m ³ m	icrograms per cubic meter			

micrograms per cubic meter below reporting limit

μg/m BRL

NA not applicable

Samples were analyzed by Liberty Mutual Industrial Hygiene Laboratory, Hopkinton, Massachusetts using the NIOSH 7300 method.

Table C.17	Air Sample Results Following Cleaning Activities from One Broadway, Cambridge,
	Massachusetts, December 29, 2006

Sample ID	Location, Description	Air Volume (liters)	Measured PCBs (μg)	Concentration (μg/m ³)
81869/70	Outdoor air sample	Pump fault	BRL < 0.06	NA
81873/74	First floor lobby	286	BRL < 0.06	BRL <0.2
81877/78	First floor lobby	293	BRL < 0.06	BRL <0.2
81881/82	Basement corridor by bathrooms	Pump fault	BRL <0.06	NA
81883/84	Seventh floor elevator lobby	298	BRL < 0.06	BRL <0.2
81885/86	Fifth floor stairwell two	302	BRL < 0.06	BRL <0.2
81913	Field blank	NA	BRL < 0.06	BRL <0.06 μg

PCB polychlorinated biphenyl

micrograms

μg μg/m³ BRL micrograms per cubic meter below reporting limit not applicable

NA

National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) for total PCBs is 1 μ g/m³.

Samples analyzed by Galson Laboratories (East Syracuse, New York) following NIOSH 5503.

Sample ID	Floor	Location	Description	Calculated Aroclor 1248 ^{1,2} (μg/100 cm ²)	Notes
81888	NA	Louver for AHU 5/6	Wipe area 0.5 sq. ft.	BRL <0.21	NA
81892	NA	Air intake duct, vertical surface	Wipe area 1 sq. ft.	BRL <0.11	NA
81894	Sixteenth	Door for Liquid Bits	Wipe area 1 sq. ft.	BRL <0.11	NA
81898	Eleventh	Tell data at stair one	Wipe area 1 sq. ft.	BRL <0.11	NA
81900	Eighth	MIT/OCW	Wipe area 1.3 sq. ft.	BRL <0.08	NA
81904	Fifth	Thing Magic counter	Wipe area 1.6 sq. ft.	BRL <0.6	NA
81906	Third	Natural Std	Wipe area 0.8 sq. ft.	BRL <0.13	NA
81910	First	Stair two grill	Wipe area 1 sq. ft.	BRL <0.11	NA
81914	NA	NA	Field blank	BRL <1.0 μg/wipe	NA

Table C.18	Wipe Sample Results for Polychlorinated Biphenyls from One Broadway,
	Cambridge, Massachusetts, December 29, 2006

 μ g/100 cm² micrograms per 100 square centimeters

sq. ft. square foot

BRL below reporting limit

not applicable NA

μ**g/wipe** micrograms per wipe

Polychlorinated biphenyls concentration analysis performed by Groundwater Analytical, Inc., using U.S. Environmental Protection Agency Method 8082 (GC/ECD). Aroclor 1016, 1221, 1232, 1242, 1254, 1260, 1262, and 1268 also tested. All results below reporting 1

2 levels, unless noted.

HEALTH-BASED ACCEPTANCE CRITERIA CALCULATION DATA

EH&E derived health-based acceptance criteria for settled dust and air in the Building according to methodology outlined in the World Trade Center (WTC) Document,¹ using values specific for occupational rather than residential exposures.

Screening values for settled dust were calculated using the following equations, for cancer and noncancer endpoints:

Screening Value_{noncancer} (mg/cm²): = 1*RfD/{[(ET_{hard}*FTSS_{hard})+(ET_{soft}*FTSS_{soft})]*[SA*FQ*SE/BW]*250/365}

Screening Value_{cancer} (mg/cm²):

 $= \{1x10^{-4}/CSF\}/\{[(ET_{hard}*FTSS_{hard})+(ET_{soft}*FTSS_{soft})]*[SA*FQ*SE/BW]*(250*ED)/(365*70)\}$

Where:

RfD (mg/kg-day)	=	Reference Dose;
CSF (mg/kg-day ⁾⁻¹	=	Cancer Slope Factor;
ET _{hard} (hours/day)	=	Exposure Time—hard surfaces;
ET _{soft} (hours/day)	=	Exposure Time—soft surfaces;
FTSS _{hard} (unitless)	=	Fraction Transferred from Surface to Skin—soft surfaces;
FTSS _{soft} (unitless)	=	Fraction Transferred from Surface to Skin—hard surfaces;
SA (cm ² /event)	=	Surface Area (for hand-mouth contact);
FQ (events/hr)	=	Frequency of hand to mouth events;
SE (unitless)	=	Saliva Extraction factor;
BW (kg)	=	Body Weight; and
ED (years)	=	Exposure Duration

EH&E used the same values that were used in the WTC Document for the RfD and CSF, FTSS (for both hard and soft surfaces), and the saliva extraction factor. For SA, FQ and BW, EH&E used the adult values provided in the WTC Document. EH&E used

¹ EPA. 2003. World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-based Benchmarks. Prepared by the Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Task Force Working Group. May 2003. (http://www.epa.gov/wtc/copc_study.htm)

exposure times of three and six hours/day, for hard and soft surfaces, respectively (versus four and eight hours/day used for adults in the WTC Document). EH&E used an exposure duration of 20 years² (versus 30 years used in the WTC Document).

Screening values for indoor air were calculated using the following equations, for cancer and noncancer endpoints:

Screening Value_{noncancer} (mg/cm²): = 1*RfC/[(ET/24)*(EF/365)]

Screening Value_{cancer} (mg/cm²): = [1x10-4/IUR]/[(ET/24)*(EF*ED)/(365*70)]

Where:

RfC (mg/m ³)	=	Reference Concentration;
IUR (mg/m ³) ⁻¹	=	Inhalation Unit Risk;
ET (hours/day)	=	Exposure Duration;
EF (days/year)	=	Exposure Frequency; and
ED (years)	=	Exposure Duration

EH&E used the same values that were used in the WTC Document for the RfC and IUR. EH&E used an exposure time of nine hours (versus 24 hours, used implicitly in the WTC Document), and exposure frequency of 250 days/year (versus 365 days/year implicitly used in the WTC Document), and an exposure duration of 20 years (versus 30 years used in the WTC Document).

² An exposure duration of 20 years corresponds with the median tenure for men, ages 50-54, as provided in the U.S. Environmental Protection Agency *Exposure Factors Handbook* (1997, Table 15-158).

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #:	LIMT-02346
JOB NUMBER:	42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: ONE BROADWAY, CAMBRIDGE, MA

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST
*S1	06B40488	SOLID	VAULT SOOT SAMPLE 1	6010 solid mcp
*S1	06B40488	SOLID	VAULT SOOT SAMPLE 1	8082 solid
*S1	06B40488	SOLID	VAULT SOOT SAMPLE 1	8270 solid
*S1	06B40488	SOLID	VAULT SOOT SAMPLE 1	cu (mg/kg) icp
*S2	06B40489	WIPE - OTHER	AIRDUCT - FLR / NE (WIPES)	pcb wipe 8082
*S3	06B40490	WIPE - OTHER	5TH FLOOR - STAIRWELL (WIPE)	pcb wipe 8082
S4	06B40491	WIPE - OTHER	5TH FLOOR - NORTHWALL (WIPE)	pcb wipe 8082
VAULT FLOOR	06B40492	OIL	OIL & WATER	pcb - oil

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-02346 JOB NUMBER: 42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

Comments :

LIMS BATCH NO. : LIMT-02346

CASE NARRATIVE SUMMARY

IN METHOD 6010, THE LOW LEVEL CALIBRATION CHECK WAS OUTSIDE CONTROL LIMITS FOR ZN. RESULTS MAY BE BIAS ON THE HIGH SIDE.

IN METHOD 8270S FOR SAMPLE(S) 06B40488, THE REPORTED RESULTS FOR PYRENE, BUTYBENZYLPHTHALATE, BIS(2-ETHYLHEXYLPHTHALATE ARE ESTIMATED. EITHER THE INITIAL OR CONTINUING CALIBRATION DID NOT MEET REQUIRED CRITERIA.

THERE ARE NO OTHER ANALYTICAL ISSUES AFFECTING THE USABILITY OF THE DATA

DETAILED CASE NARRATIVE

METHOD SW846-6010

RECOMMENDED SAMPLE HOLDING TIMES WERE NOT EXCEEDED FOR ALL SAMPLES ANALYZED BY METHOD 6010 UNLESS LISTED BELOW: NONE EXCEEDED

ALL SAMPLES FOR METHOD 6010 WERE RECEIVED PRESERVED PROPERLY IN THE PROPER CONTAINERS AS SPECIFIED ON THE CHAIN-OF-CUSTODY FORM UNLESS LISTED BELOW: ALL PROPERLY PRESERVED

INITIAL AND CONTINUING CALIBRATIONS MET ALL REQUIRED PERFORMANCE STANDARDS FOR METHOD 6010 EXCEPT AS LISTED BELOW: ALL STANDARDS MET EXCEPT THE LOW LEVEL CALIBRATION CHECK WAS OUTSIDE CONTROL LIMITS FOR ZN. RESULTS MAY BE BIAS ON THE HIGH SIDE.

INTERFERENCE CHECK STANDARDS (ICSA & ICSAB) VERIFIED INTER-ELEMENT SPECTRAL INTERFERENCE CORRECTIONS, WITH CONTROL LIMITS OF 80-120% FOR ALL ANALYTES, EXCEPT AS LISTED BELOW: ALL STANDARDS MET

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RECOVERIES, AS WELL AS LCS RPD, FOR REQUIRED MCP DATA ENHANCEMENT 6010 ELEMENTS WERE ALL WITHIN REQUIRED CONTROL LIMITS EXCEPT AS LISTED BELOW: NONE OUTSIDE CONTROL LIMITS

THE 6010 METHOD BLANK WAS FOUND NOT TO BE CONTAMINATED WITH TARGET ANALYTES AT LEVELS ABOVE THE REPORTING LIMIT EXCEPT WHERE LISTED BELOW: NO CONTAMINATION NOTED

ALL 6010 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERIES, SAMPLE DUPLICATE RPDs AND MSDRPD, IF REQUESTED IN THIS BATCH WERE WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE REQUESTED OR PERFORMED ON SAMPLES SPECIFIC TO THIS CHAIN-OF-CUSTODY.

ALL ANALYTE LIST COMPOUNDS WERE REPORTED FOR METHOD 6010 UNLESS NOTED BELOW: ALL RESULTS AND CU WERE REPORTED

METHOD SW846 8082 - SOLID

RECOMMENDED SAMPLE HOLDING TIMES WERE NOT EXCEEDED FOR ALL SAMPLES ANALYZED BY METHOD 8082 UNLESS LISTED BELOW: NONE EXCEEDED

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-02346 JOB NUMBER: 42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

ALL SAMPLES FOR METHOD 8082 WERE RECEIVED PRESERVED PROPERLY IN THE PROPER CONTAINERS AS SPECIFIED ON THE CHAIN-OF-CUSTODY FORM UNLESS LISTED BELOW: ALL PROPERLY PRESERVED

SOLID SAMPLES, IF ANY, IN THE BATCH WERE EXTRACTED BY THE FOLLOWING METHOD: MICROWAVE: SW846 3546

THE 8082 METHOD BLANK WAS NOT CONTAMINATED WITH TARGET ANALYTES AT LEVELS ABOVE THE REPORTING LIMIT EXCEPT WHERE LISTED BELOW: NO CONTAMINATION NOTED

INITIAL AND CONTINUING CALIBRATIONS MET ALL REQUIRED PERFORMANCE STANDARDS FOR METHOD 8082 EXCEPT AS LISTED BELOW: ALL STANDARDS MET

LABORATORY CONTROL SAMPLE RECOVERIES, LABORATORY CONTROL SAMPLE DUPLICATE RECOVERIES, AND DUPLICATE LABORATORY FORTIFIED BLANK RPDs FOR REQUIRED MCP DATA ENHANCEMENT 8082 ISOMERS WERE ALL WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE OUTSIDE OF CONTROL LIMITS

ALL 8082 SURROGATE STANDARD RECOVERIES WERE WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE OUTSIDE OF CONTROL LIMITS

PCB QC SURROGATE RECOVERIES

BLANK-40488

TETRACHLORO-M-XYLENE: DECACHLOROBIPHENYL:	121% 101 %	
LFBLANK-57577	LFB	LFB DUPLICATE
TETRACHLORO-M-XYLENE: DECACHLOROBIPHENYL:	102% 104%	101% 106%

ALL 8082 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERIES, SAMPLE DUPLICATE RPDs AND MSDRPDs, IF REQUESTED IN THIS BATCH WERE WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE REQUESTED AND/OR NONE PERFORMED

ALL POSITIVE PCB RESULTS WERE CONFIRMED ON A SECOND DISSIMILAR COLUMN WITH AN RPD LESS THAN OR EQUAL TO 40% BETWEEN THE RESULTS UNLESS LISTED BELOW: ALL CONFIRMED

ALL 8082 SAMPLES WERE ANALYZED UNDILUTED UNLESS SPECIFIED BELOW: SAMPLE WAS ANALYZED AT 50X DILUTION

METHOD SW846 8270 SOIL

RECOMMENDED SAMPLE HOLDING TIMES WERE NOT EXCEEDED FOR ALL SAMPLES ANALYZED BY METHOD 8270 UNLESS LISTED BELOW: NONE EXCEEDED

ALL SAMPLES FOR METHOD 8270 WERE RECEIVED PRESERVED PROPERLY IN THE PROPER CONTAINERS AS SPECIFIED ON THE CHAIN-OF-CUSTODY FORM UNLESS LISTED BELOW: ALL PROPERLY PRESERVED

SOLID SAMPLES, IF ANY, IN THE BATCH WERE EXTRACTED BY THE FOLLOWING METHOD: MICROWAVE: SW846 3546

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-02346 JOB NUMBER: 42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

THE 8270 METHOD BLANK WAS NOT CONTAMINATED WITH TARGET ANALYTES AT LEVELS ABOVE THE REPORTING LIMIT EXCEPT WHERE LISTED BELOW: NO CONTAMINATION NOTED

ALL 8270 SAMPLES WERE ANALYZED UNDILUTED UNLESS SPECIFIED BELOW:

SAMPLE DILUTION 06B40488 10X

TUNING, INITIAL AND CONTINUING CALIBRATIONS MET ALL REQUIRED PERFORMANCE STANDARDS FOR METHOD 8270 EXCEPT THAT THE RESPONSE FACTOR FOR BENZOIC ACID IS LESS THAN 0.05, AND/OR EXCEPT AS LISTED BELOW:

IN METHOD 8270S FOR SAMPLE(S) 06B40488, THE REPORTED RESULTS FOR PYRENE, BUTYBENZYLPHTHALATE, BIS(2-ETHYLHEXYLPHTHALATE ARE ESTIMATED. EITHER THE INITIAL OR CONTINUING CALIBRATION DID NOT MEET REQUIRED CRITERIA.

LABORATORY CONTROL SAMPLE RECOVERIES FOR REQUIRED MCP DATA ENHANCEMENT 8270 COMPOUNDS WERE ALL WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD, 40-140% FOR BASE/NEUTRALS AND 30-130% FOR ACIDS EXCEPT FOR "DIFFICULT ANALYTES" LISTED BELOW AND/OR OTHERWISE LISTED BELOW:

DIFFICULT ANALYTES FOR SOIL LCS - LIMITS BETWEEN 10 AND180% DEPENDING ON THE COMPOUND (SEE QC SUMMARY FOR LIMITS): 3,3'-DICHLOROBENZIDINE, PYRIDINE, ANILINE, 4-CHLOROANILINE, 3-NITROANILINE, AND N-NITROSODIPHENYLAMINE

DIFFICULT ANALYTES FOR WATER LCS - LIMITS BETWEEN 5 AND 150% DEPENDING ON THE COMPOUND (SEE QC SUMMARY FOR LIMITS): ANILINE, BENZOIC ACID, DIMETHYLPHTHALATE, BIS(2-CHLOROISOPROPYL)ETHER, HEXACHLOROCYCLOPENTADIENE, N-NITROSODIPHENYLAMINE, PYRIDINE, 2,4-DINITROPHENOL, 4-NITROPHENOL, AND PHENOL

DUPLICATE LABORATORY FORTIFIED BLANK RPDs WERE ALL LESS THAN OR EQUAL TO 20% FOR WATER OR 30% FOR SOIL EXCEPT FOR "DIFFICULT ANALYTES" WHERE RPDs OF 50% ARE USED AND/OR OTHERWISE LISTED BELOW:

DIFFICULT ANALYTES FOR WATER RPDs: ANILINE, BENZO(B)FLUORANTHENE, BENZO(K)FLUORANTHENE, BENZOIC ACID, BENZO(A,H)ANTHRACENE, DIMETHYLPHTHALTE, HEXACHLOROCYCLOPENTADIENE, HEXACHLOROETHANE, INDENO(1,2,3-CD)PYRENE, 4,6-DINITRO-2-METHYLPHENOL, 2,4-DINITROPHENOL, 4-NITROPHENOL, 2,4,6-TRICHLOROPHENOL, PENTACHLOROPHENOL, AND PYRIDINE

DIFFICULT ANALYTES FOR SOIL RPDs: 3,3'-DICHLOROBENZIDINE, BENZOIC ACID, 4-NITROPHENOL, ANILINE, AND PYRIDINE

COMPOUNDS OUTSIDE OF CONTROL LIMITS: NONE OUTSIDE OF CONTROL LIMITS

ALL 8270 SURROGATE STANDARD RECOVERIES WERE WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE OUTSIDE OF CONTROL LIMITS

ALL 8270 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERIES, SAMPLE DUPLICATE RPDs AND MSDRPD, IF REQUESTED IN THIS BATCH WERE WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE REQUESTED

ALL ANALYTE LIST COMPOUNDS WERE REPORTED FOR METHOD 8270 UNLESS LISTED BELOW: ALL RESULTS WERE REPORTED.

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-02346 JOB NUMBER: 42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) IF REQUESTED ARE LISTED BELOW: NOT REQUESTED

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations :

AIHA 100033 MASSACHUSETTS MA0100 CONNECTICUT PH-0567 NEW YORK ELAP/NELAP 10899 AIHA ELLAP (LEAD) 100033 NEW HAMPSHIRE NELAP 2516 VERMONT DOH (LEAD) No. LL015036 RHODE ISLAND (LIC. No. 112)

NEW JERSEY NELAP NJ MA007 (AIR)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Edward Denson 12/11/06

Tod Kopyscinski Director of Operations Sondra L. Slesinski Quality Assurance Officer

SIGNATURE

DATE

Edward Denson Technical Director

* See end of data tabulation for notes and comments pertaining to this sample

DOT MCGLINCY

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 Purchase Order No.: Project Location: ONE BROADWAY, CAMBRIDGE, MA Date Received: 12/9/2006 12/11/2006 Page 1 of 8 Project Number: 42462-1111 LIMS-BAT #: LIMT-02346 Job Number: 42462-1111

Field Sample # : S1

Sample ID :	*06B40488	Sampled : 12/9/2006
		VAULT SOOT SAMPLE 1

Sample Matrix: SOLID

	Units	Results	RL	Method	Date Analyzed	Analyst
6010 solid				SW846 6010		
Antimony	mg/kg	1560	4.00		12/10/06	AMP
Arsenic	mg/kg	14.5	2.50		12/10/06	AMP
Barium	mg/kg	160.	0.50		12/10/06	AMP
Beryllium	mg/kg	ND	0.25		12/10/06	AMP
Cadmium	mg/kg	1480	0.25		12/10/06	AMP
Chromium	mg/kg	124.	0.50		12/10/06	AMP
Lead	mg/kg	3360	0.75		12/10/06	AMP
Nickel	mg/kg	115.	0.50		12/10/06	AMP
Selenium	mg/kg	ND	5.00		12/10/06	AMP
Silver	mg/kg	72.2	0.50		12/10/06	AMP
Thallium	mg/kg	ND	3.00		12/10/06	AMP
Vanadium	mg/kg	14.0	5.00		12/10/06	AMP
Zinc	mg/kg	27000	1.00		12/10/06	AMP
8082 solid				SW846 8081/8082		
PCB 1016	mg/kg	ND	20.0		12/11/06	JMR
PCB-1221	mg/kg	ND	20.0		12/11/06	JMR
PCB-1232	mg/kg	ND	20.0		12/11/06	JMR
PCB-1242	mg/kg	ND	20.0		12/11/06	JMR
PCB-1248	mg/kg	ND	20.0		12/11/06	JMR
PCB-1254	mg/kg	ND	20.0		12/11/06	JMR
PCB-1260	mg/kg	101.	20.0		12/11/06	JMR
PCB 1262	mg/kg	ND	20.0		12/11/06	JMR
PCB 1268	mg/kg	ND	20.0		12/11/06	JMR
Extraction Date PCBs		12/10/2006	5		12/11/06	JMR
8270 solid				SW846 8270		
Acenaphthene	mg/kg	ND	1.67		12/11/06	BGL
Acenaphthylene	mg/kg	10.8	1.67		12/11/06	BGL
Acetophenone	mg/kg	ND	3.34		12/11/06	BGL
Aniline	mg/kg	ND	3.34		12/11/06	BGL
Anthracene	mg/kg	12.8	1.67		12/11/06	BGL
Benzoic Acid	mg/kg	ND	10.0		12/11/06	BGL
Benzo(a)anthracene	mg/kg	5.51	1.67		12/11/06	BGL
Benzo(a)pyrene	mg/kg	5.25	1.67		12/11/06	BGL
Benzo(b)fluoranthene	mg/kg	5.34	1.67		12/11/06	BGL
Benzo(g,h,i)perylene	mg/kg	4.38	1.67		12/11/06	BGL

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

DOT MCGLINCY

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 Purchase Order No.: Project Location: ONE BROADWAY, CAMBRIDGE, MA Date Received: 12/9/2006

12/11/2006 Page 2 of 8 Project Number: 42462-1111 LIMS-BAT #: LIMT-02346 Job Number: 42462-1111

Field Sample # : S1

Sample ID :	*06B40488	

Sampled : 12/9/2006 VAULT SOOT SAMPLE 1

Sample Matrix: SOLID

	Units	Results	RL	Method	Date Analyzed	Analyst
8270 solid				SW846 8270		
Benzo(k)fluoranthene	mg/kg	1.69	1.67		12/11/06	BGL
Bis(2-chloroethoxy)methane	mg/kg	ND	3.34		12/11/06	BGL
Bis(2-chloroethyl)ether	mg/kg	ND	3.34		12/11/06	BGL
Bis(2-chloroisopropyl)ether	mg/kg	ND	3.34		12/11/06	BGL
Bis(2-ethylhexyl)phthalate	mg/kg	16.3	3.33		12/11/06	BGL
4-Bromophenyl phenyl ether	mg/kg	ND	3.34		12/11/06	BGL
Butylbenzylphthalate	mg/kg	ND	6.67		12/11/06	BGL
Carbazole	mg/kg	ND	1.67		12/11/06	BGL
4-Chloroaniline	mg/kg	ND	6.67		12/11/06	BGL
4-Chloro-3-methylphenol	mg/kg	ND	6.67		12/11/06	BGL
2-Chloronaphthalene	mg/kg	ND	3.34		12/11/06	BGL
2-Chlorophenol	mg/kg	ND	3.34		12/11/06	BGL
4-Chlorophenylphenyl ether	mg/kg	ND	3.34		12/11/06	BGL
Chrysene	mg/kg	6.04	1.67		12/11/06	BGL
Dibenzofuran	mg/kg	ND	3.34		12/11/06	BGL
Dibenz(a,h)anthracene	mg/kg	ND	1.67		12/11/06	BGL
1,2-Dichlorobenzene	mg/kg	ND	3.34		12/11/06	BGL
1,3-Dichlorobenzene	mg/kg	ND	3.34		12/11/06	BGL
1,4-Dichlorobenzene	mg/kg	ND	3.34		12/11/06	BGL
3,3'-Dichlorobenzidine	mg/kg	ND	1.67		12/11/06	BGL
2,4-Dichlorophenol	mg/kg	ND	3.34		12/11/06	BGL
Diethylphthalate	mg/kg	ND	3.34		12/11/06	BGL
2,4-Dimethylphenol	mg/kg	ND	13.4		12/11/06	BGL
Dimethylphthalate	mg/kg	ND	6.67		12/11/06	BGL
Di-n-butylphthalate	mg/kg	ND	3.34		12/11/06	BGL
Di-n-octylphthalate	mg/kg	ND	6.67		12/11/06	BGL
4,6-Dinitro-2-methylphenol	mg/kg	ND	3.34		12/11/06	BGL
2,4-Dinitrophenol	mg/kg	ND	6.67		12/11/06	BGL
2,4-Dinitrotoluene	mg/kg	ND	3.34		12/11/06	BGL
2,6-Dinitrotoluene	mg/kg	ND	3.34		12/11/06	BGL
1,2-Diphenylhydrazine (as Azobenzene)	mg/kg	ND	3.34		12/11/06	BGL
Fluoranthene	mg/kg	22.1	1.67		12/11/06	BGL
Fluorene	mg/kg	10.0	1.67		12/11/06	BGL
Hexachlorobenzene	mg/kg	ND	3.34		12/11/06	BGL
Hexachlorobutadiene	mg/kg	ND	3.34		12/11/06	BGL
Hexachlorocyclopentadiene	mg/kg	ND	6.67		12/11/06	BGL

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

12/11/2006

Page 3 of 8

Project Number: 42462-1111

LIMS-BAT #: LIMT-02346

Job Number: 42462-1111

DOT MCGLINCY

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 Purchase Order No.: Project Location: ONE BROADWAY, CAMBRIDGE, MA Date Received: 12/9/2006

Field Sample # : S1

Sample ID :	*06B40488	Sample

Sampled : 12/9/2006 VAULT SOOT SAMPLE 1

Sample Matrix: SOLID

	Units	Results	RL	Method	Date Analyzed	Analyst
8270 solid				SW846 8270		
Hexachloroethane	mg/kg	ND	3.34		12/11/06	BGL
Indeno(1,2,3-cd)pyrene	mg/kg	4.47	1.67		12/11/06	BGL
Isophorone	mg/kg	ND	3.34		12/11/06	BGL
o-cresol	mg/kg	ND	3.34		12/11/06	BGL
m & p-cresol(s)	mg/kg	ND	6.67		12/11/06	BGL
2-Methylnaphthalene	mg/kg	ND	1.67		12/11/06	BGL
Naphthalene	mg/kg	ND	1.67		12/11/06	BGL
2-Nitroaniline	mg/kg	ND	3.34		12/11/06	BGL
3-Nitroaniline	mg/kg	ND	3.34		12/11/06	BGL
4-Nitroaniline	mg/kg	ND	3.34		12/11/06	BGL
Nitrobenzene	mg/kg	ND	3.34		12/11/06	BGL
2-Nitrophenol	mg/kg	ND	3.34		12/11/06	BGL
4-Nitrophenol	mg/kg	ND	6.67		12/11/06	BGL
N-Nitrosodiphenylamine	mg/kg	ND	3.34		12/11/06	BGL
N-Nitroso-di-n-propylamine	mg/kg	ND	3.34		12/11/06	BGL
Pentachlorophenol	mg/kg	ND	3.34		12/11/06	BGL
Phenanthrene	mg/kg	36.0	1.67		12/11/06	BGL
Phenol	mg/kg	ND	3.34		12/11/06	BGL
Pyrene	mg/kg	26.8	1.67		12/11/06	BGL
Pyridine	mg/kg	ND	3.34		12/11/06	BGL
1,2,4-Trichlorobenzene	mg/kg	ND	3.34		12/11/06	BGL
2,4,5-Trichlorophenol	mg/kg	ND	3.34		12/11/06	BGL
2,4,6-Trichlorophenol	mg/kg	ND	3.34		12/11/06	BGL
Extraction Date 8270		12/10/2006			12/11/06	BGL
cu (mg/kg)				SW846 3050/6010		
Copper	mg/kg	193000.	0.50		12/10/06	AMP

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

DOT MCGLINCY

TRC SOLUTIONS - LOWELL				12/11/2006
BOOTT MILLS SOUTH, FOOT OF JOHN ST.				Page 4 of 8
LOWELL, MA 018	52	Purchase Order No.:	Project Numbe	er: 42462-1111
Project Location:	ONE BROADWAY, CAMBRIDGE	, MA	LIMS-BAT #:	LIMT-02346
Date Received:	12/9/2006		Job Number:	42462-1111

Field Sample # : S2

Sample ID :	*06B40489	Sampled : 12/9/2006
		AIRDUCT - FLR / NE (WIPES)

Sample Matrix: WIPE - OTHER

	Units	Results	RL	Method	Date Analyzed	Analyst
pcb wipe 8				SW846 8082		
PCB-1221	ug	ND	10.0		12/11/06	JMR
PCB-1232	ug	ND	10.0		12/11/06	JMR
PCB-1242	ug	ND	10.0		12/11/06	JMR
PCB-1248	ug	ND	10.0		12/11/06	JMR
PCB-1254	ug	ND	10.0		12/11/06	JMR
PCB-1260	ug	67.5	2.50		12/11/06	JMR

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

DOT MCGLINCY

 TRC SOLUTIONS - LOWELL
 12/11/2006

 BOOTT MILLS SOUTH, FOOT OF JOHN ST.
 Page 5 of 8

 LOWELL, MA 01852
 Purchase Order No.:
 Project Number: 42462-1111

 Project Location:
 ONE BROADWAY, CAMBRIDGE, MA
 LIMS-BAT #:
 LIMT-02346

 Date Received:
 12/9/2006
 Job Number:
 42462-1111

Field Sample #: S3

Sample ID :	*06B40490	Sampled : 12/9/2006
		5TH FLOOR - STAIRWELL (WIPE)

Sample Matrix: WIPE - OTHER

	Units	Results	RL	Method	Date Analyzed	Analyst
pcb wipe 8				SW846 8082		
PCB-1221	ug	ND	0.200		12/11/06	JMR
PCB-1232	ug	ND	0.200		12/11/06	JMR
PCB-1242	ug	ND	0.200		12/11/06	JMR
PCB-1248	ug	ND	0.200		12/11/06	JMR
PCB-1254	ug	0.560	0.050		12/11/06	JMR
PCB-1260	ug	0.307	0.050		12/11/06	JMR

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

DOT MCGLINCY

TRC SOLUTIONS - LOWELL IZH	
BOOTT MILLS SOUTH, FOOT OF JOHN ST. Pag	e 6 of 8
LOWELL, MA 01852 Purchase Order No.: Project Number: 424	462-1111
Project Location: ONE BROADWAY, CAMBRIDGE, MA LIMS-BAT #: LIM	T-02346
Date Received: 12/9/2006 Job Number: 424	62-1111

Field Sample # : S4

Sample ID :	06B40491	Sampled : 12/9/2006
		5TH FLOOR - NORTHWALL (WIPE)

Sample Matrix: WIPE - OTHER

	Units	Results	RL	Method	Date Analyzed	Analyst
pcb wipe 8				SW846 8082		
PCB-1221	ug	ND	0.200		12/11/06	JMR
PCB-1232	ug	ND	0.200		12/11/06	JMR
PCB-1242	ug	ND	0.200		12/11/06	JMR
PCB-1248	ug	ND	0.200		12/11/06	JMR
PCB-1254	ug	ND	0.200		12/11/06	JMR
PCB-1260	ug	ND	0.200		12/11/06	JMR

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

DOT MCGLINCY

TRC SOLUTIONS	RC SOLUTIONS - LOWELL			12/11/2006		
BOOTT MILLS SO	UTH, FOOT OF JOHN ST.			Page 7 of 8		
LOWELL, MA 0185	52	Purchase Order No.:	Project Numbe	r: 42462-1111		
Project Location:	ONE BROADWAY, CAMBRIDGE	, MA	LIMS-BAT #:	LIMT-02346		
Date Received:	12/9/2006		Job Number:	42462-1111		

Field Sample # : VAULT FLOOR

06B40492

Sampled : 12/8/2006
OIL & WATER

Sample Matrix: OIL

Sample ID :

	Units	Results	RL	Method	Date Analyzed	Analyst
pcb - oil				EPA 600/4-81-045		
PCB 1016	mg/kg	ND	1.79		12/10/06	JB
PCB-1221	mg/kg	ND	1.79		12/10/06	JB
PCB-1232	mg/kg	ND	1.79		12/10/06	JB
PCB-1242	mg/kg	18.9	1.79		12/10/06	JB
PCB-1248	mg/kg	ND	1.79		12/10/06	JB
PCB-1254	mg/kg	ND	1.79		12/10/06	JB
PCB-1260	mg/kg	ND	1.79		12/10/06	JB
PCB 1262	mg/kg	ND	1.79		12/10/06	JB
PCB 1268	mg/kg	ND	1.79		12/10/06	JB

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

DOT MCGLINCY **TRC SOLUTIONS - LOWELL** BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 Purchase Order No .: Project Location: ONE BROADWAY, CAMBRIDGE, MA Date Received: 12/9/2006

The following notes were attached to the reported analysis :

06B40488 Sample ID:

Analysis: 8082 solid

SAMPLE CONTAINS INCOMPLETELY RESOLVED MIXTURE OF AROCLORS. AROCLOR(S) WITH THE CLOSEST MATCHING PATTERN IS REPORTED.

06B40489 Sample ID:

Analysis: pcb wipe 8082

SAMPLE CONTAINS INCOMPLETELY RESOLVED MIXTURE OF AROCLORS. AROCLOR(S) WITH THE CLOSEST MATCHING PATTERN IS REPORTED.

Sample ID: * 06B40490

Analysis: pcb wipe 8082

SAMPLE CONTAINS INCOMPLETELY RESOLVED MIXTURE OF AROCLORS. AROCLOR(S) WITH THE CLOSEST MATCHING PATTERN IS REPORTED.

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

12/11/2006 Page 8 of 8 Project Number: 42462-1111 LIMS-BAT #: LIMT-02346 Job Number: 42462-1111

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates Method Blanks

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 1 of 25		
QC Batch Number: GC/ECD-9261						
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
BLANK-95874						
	PCB-1232	Blank	<1.87	mg/kg		
	PCB-1242	Blank	<1.87	mg/kg		
	PCB-1254	Blank	<1.87	mg/kg		
	PCB-1260	Blank	<1.87	mg/kg		
	PCB-1248	Blank	<1.87	mg/kg		
	PCB-1221	Blank	<1.87	mg/kg		
	PCB 1016	Blank	<1.87	mg/kg		
	PCB 1262	Blank	<1.87	mg/kg		
	PCB 1268	Blank	<1.87	mg/kg		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346	Page 2 of 25			
QC Batch Number	er: GC/ECD-9263					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
06B40488						
	Decachlorobiphenyl	Surrogate Recovery	100.0	%	30-150	
	Tetrachloro-m-Xylene	Surrogate Recovery	100.0	%	30-150	
BLANK-95878						
	PCB-1232	Blank	<0.100	mg/kg		
	PCB-1242	Blank	<0.100	mg/kg		
	PCB-1254	Blank	<0.100	mg/kg		
	PCB-1260	Blank	<0.100	mg/kg		
	PCB-1248	Blank	<0.100	mg/kg		
	PCB-1221	Blank	<0.100	mg/kg		
	PCB 1016	Blank	<0.100	mg/kg		
	PCB 1262	Blank	<0.100	mg/kg		
	PCB 1268	Blank	<0.100	mg/kg		
LFBLANK-57577						
	PCB-1260	Lab Fort Blank Amt.	0.250	mg/kg		
		Lab Fort Blk. Found	0.315	mg/kg		
		Lab Fort Blk. % Rec.	126.000	%	40-140	
		Dup Lab Fort BI Amt.	0.250	mg/kg		
		Dup Lab Fort Bl. Fnd	0.330	mg/kg		
		Dup Lab Fort BI %Rec	132.000	%		
		Lab Fort Blank Range	6.000	units		
		Lab Fort Bl. Av. Rec	129.000	%		
		LFB Duplicate RPD	4.651	%	0-30	
	PCB 1016	Lab Fort Blank Amt.	0.250	mg/kg		
		Lab Fort Blk. Found	0.260	mg/kg		
		Lab Fort Blk. % Rec.	103.980	%	40-140	
		Dup Lab Fort BI Amt.	0.250	mg/kg		
		Dup Lab Fort Bl. Fnd	0.249	mg/kg		
		Dup Lab Fort BI %Rec	99.560	%		
		Lab Fort Blank Range	4.420	units		
		Lab Fort Bl. Av. Rec	101.770	%		
		LFB Duplicate RPD	4.343	%	0-30	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates Method Blanks

Report Date: 12/11/2006 Lims Bat #: LIMT-02346		Page	Page 3 of 25		
QC Batch Number:	GC/ECD-9264				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
06B40489					
	Decachlorobiphenyl	Surrogate Recovery	50.0	%	30-150
	Tetrachloro-m-Xylene	Surrogate Recovery	100.0	%	30-150
06B40490					
	Decachlorobiphenyl	Surrogate Recovery	88.0	%	30-150
	Tetrachloro-m-Xylene	Surrogate Recovery	98.0	%	30-150
06B40491					
	Decachlorobiphenyl	Surrogate Recovery	91.0	%	30-150
	Tetrachloro-m-Xylene	Surrogate Recovery	101.0	%	30-150
BLANK-95908					
	PCB-1232	Blank	<0.200	ug	
	PCB-1242	Blank	<0.200	ug	
	PCB-1254	Blank	<0.200	ug	
	PCB-1260	Blank	<0.200	ug	
	PCB-1248	Blank	<0.200	ug	
	PCB-1221	Blank	<0.200	ug	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006 L	ns Bat # : LIMT-02346		Page 4 of 25	
QC Batch Number:	GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
06B40488					
	Phenol-d6	Surrogate Recovery	72.5	%	30-130
	Nitrobenzene-d5	Surrogate Recovery	65.0	%	30-130
	2-Fluorobiphenyl	Surrogate Recovery	85.0	%	30-130
	2,4,6-Tribromophenol	Surrogate Recovery	82.5	%	30-130
	Terphenyl-d14	Surrogate Recovery	100.0	%	30-130
	2-Fluorophenol	Surrogate Recovery	62.5	%	30-130
BLANK-95875					
	1,4-Dichlorobenzene	Blank	<0.34	mg/kg	
	Naphthalene	Blank	<0.17	mg/kg	
	1,2-Dichlorobenzene	Blank	<0.34	mg/kg	
	1,3-Dichlorobenzene	Blank	<0.34	mg/kg	
	Acenaphthene	Blank	<0.17	mg/kg	
	Acenaphthylene	Blank	<0.17	mg/kg	
	Aniline	Blank	<0.34	mg/kg	
	Anthracene	Blank	<0.17	mg/kg	
	Benzo(a)anthracene	Blank	<0.17	mg/kg	
	Benzo(a)pyrene	Blank	<0.17	mg/kg	
	Benzo(b)fluoranthene	Blank	<0.17	mg/kg	
	Benzo(g,h,i)perylene	Blank	<0.17	mg/kg	
	Benzoic Acid	Blank	<1.00	mg/kg	
	Bis(2-chloroethyl)ether	Blank	<0.34	mg/kg	
	Bis(2-chloroethoxy)methane	Blank	<0.34	mg/kg	
	Bis(2-chloroisopropyl)ether	Blank	<0.34	mg/kg	
	Bis(2-ethylhexyl)phthalate	Blank	<0.34	mg/kg	
	4-Bromophenyl phenyl ether	Blank	<0.34	mg/kg	
	Butylbenzylphthalate	Blank	<0.67	mg/kg	
	4-Chloroaniline	Blank	<0.67	mg/kg	
	2-Chloronaphthalene	Blank	<0.34	mg/kg	
	4-Chlorophenylphenyl ether	Blank	<0.34	mg/kg	
	Chrysene	Blank	<0.17	mg/kg	
	Dibenz(a,h)anthracene	Blank	<0.17	mg/kg	
	Dibenzofuran	Blank	< 0.34	mg/kg	
	3,3'-Dichlorobenzidine	Blank	<0.17	mg/kg	
	Diethylphthalate	Blank	< 0.34	mg/kg	
	Dimethylphthalate	Blank	< 0.67	mg/kg	
	Di-n-butyiphthalate	Blank	< 0.34	mg/kg	
		Blank	<0.34	mg/kg	
		Blank	<0.34	mg/kg	
	i,∠-⊔ipnenyinydrazine (as Azobe	nzene) Blank	< 0.34	mg/kg	
		Blank	<0.67	mg/kg	
		Blank	< 0.17	mg/kg	
		Blank	<0.17	mg/kg	
	Hexachiorobenzene	ыапк	<0.34	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346	Page 5 of 25		Page 5 of 25		
QC Batch Number:	GCMS/SEMI-8928						
Sample Id	Analysis	QC Analysis	Values	Units	Limits		
BLANK-95875							
	Hexachlorobutadiene	Blank	<0.34	mg/kg			
	Hexachlorocyclopentadiene	Blank	<0.67	mg/kg			
	Hexachloroethane	Blank	<0.34	mg/kg			
	Indeno(1,2,3-cd)pyrene	Blank	<0.17	mg/kg			
	Isophorone	Blank	<0.34	mg/kg			
	2-Methylnaphthalene	Blank	<0.17	mg/kg			
	2-Nitroaniline	Blank	<0.34	mg/kg			
	3-Nitroaniline	Blank	<0.34	mg/kg			
	Nitrobenzene	Blank	<0.34	mg/kg			
	N-Nitroso-di-n-propylamine	Blank	<0.34	mg/kg			
	N-Nitrosodiphenylamine	Blank	<0.34	mg/kg			
	Phenanthrene	Blank	<0.17	mg/kg			
	Pyrene	Blank	<0.17	mg/kg			
	1,2,4-Trichlorobenzene	Blank	<0.34	mg/kg			
	4-Chloro-3-methylphenol	Blank	<0.67	mg/kg			
	2-Chlorophenol	Blank	<0.34	mg/kg			
	2,4-Dichlorophenol	Blank	<0.34	mg/kg			
	2,4-Dimethylphenol	Blank	<1.34	mg/kg			
	4,6-Dinitro-2-methylphenol	Blank	<0.34	mg/kg			
	2,4-Dinitrophenol	Blank	<0.67	mg/kg			
	o-cresol	Blank	<0.34	mg/kg			
	m & p-cresol(s)	Blank	<0.67	mg/kg			
	2-Nitrophenol	Blank	<0.34	mg/kg			
	4-Nitrophenol	Blank	<0.67	mg/kg			
	Phenol	Blank	<0.34	mg/kg			
	2,4,5-Trichlorophenol	Blank	<0.34	mg/kg			
	2,4,6-Trichlorophenol	Blank	<0.34	mg/kg			
	Pentachlorophenol	Blank	<0.34	mg/kg			
	Pyridine	Blank	<0.34	mg/kg			
	Benzo(k)fluoranthene	Blank	<0.17	mg/kg			
	4-Nitroaniline	Blank	<0.34	mg/kg			
	Acetophenone	Blank	<0.34	mg/kg			
	Carbazole	Blank	<0.17	mg/kg			
LFBLANK-57576							
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	1.67	mg/kg			
		Lab Fort Blk. Found	1.43	mg/kg			
		Lab Fort Blk. % Rec.	85.90	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort Bl. Fnd	1.44	mg/kg			
		Dup Lab Fort BI %Rec	86.46	%			
		Lab Fort Blank Range	0.56	units			
		Lab Fort Bl. Av. Rec	86.18	%			
		LFB Duplicate RPD	0.65	%	0-30		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # :	Lims Bat # : LIMT-02346		Page 6 of 25			
QC Batch Number:	GCMS/SEMI-8928							
Sample Id	Analysis	Q	C Analysis	Values	Units	Limits		
LFBLANK-57576								
	Naphthalene	Lal	o Fort Blank Amt.	1.67	mg/kg			
		Lal	o Fort Blk. Found	1.53	mg/kg			
		Lal	o Fort Blk. % Rec.	92.00	%	40-140		
		Du	p Lab Fort Bl Amt.	1.67	mg/kg			
		Du	p Lab Fort Bl. Fnd	1.51	mg/kg			
		Du	p Lab Fort BI %Rec	90.66	%			
		Lal	o Fort Blank Range	1.34	units			
		Lal	o Fort Bl. Av. Rec	91.33	%			
		LFI	B Duplicate RPD	1.47	%	0-30		
	1,2-Dichlorobenzene	Lal	o Fort Blank Amt.	1.67	mg/kg			
		Lal	o Fort Blk. Found	1.44	mg/kg			
		Lal	o Fort Blk. % Rec.	86.60	%	40-140		
		Du	p Lab Fort Bl Amt.	1.67	mg/kg			
		Du	p Lab Fort Bl. Fnd	1.42	mg/kg			
		Du	p Lab Fort BI %Rec	85.26	%			
		Lal	o Fort Blank Range	1.34	units			
		Lal	o Fort Bl. Av. Rec	85.93	%			
		LFI	B Duplicate RPD	1.56	%	0-30		
	1,3-Dichlorobenzene	Lal	o Fort Blank Amt.	1.67	mg/kg			
		Lal	o Fort Blk. Found	1.43	mg/kg			
		Lal	o Fort Blk. % Rec.	85.52	%	40-140		
		Du	p Lab Fort Bl Amt.	1.67	mg/kg			
		Du	p Lab Fort Bl. Fnd	1.40	mg/kg			
		Du	p Lab Fort BI %Rec	83.72	%			
		Lal	o Fort Blank Range	1.80	units			
		Lal	o Fort Bl. Av. Rec	84.62	%			
		LFI	B Duplicate RPD	2.13	%	0-30		
	Acenaphthene	Lal	o Fort Blank Amt.	1.67	mg/kg			
		Lal	o Fort Blk. Found	1.64	mg/kg			
		Lal	o Fort Blk. % Rec.	98.46	%	40-140		
		Du	p Lab Fort Bl Amt.	1.67	mg/kg			
		Du	p Lab Fort Bl. Fnd	1.63	mg/kg			
		Du	p Lab Fort BI %Rec	97.70	%			
		Lal	o Fort Blank Range	0.76	units			
		Lal	o Fort Bl. Av. Rec	98.08	%			
		LFI	B Duplicate RPD	0.77	%	0-30		
	Acenaphthylene	Lal	o Fort Blank Amt.	1.67	mg/kg			
		Lal	o Fort Blk. Found	1.65	mg/kg			
		Lal	o Fort Blk. % Rec.	99.22	%	40-140		
		Du	p Lab Fort Bl Amt.	1.67	mg/kg			
		Du	p Lab Fort Bl. Fnd	1.62	mg/kg			
		Du	p Lab Fort BI %Rec	97.40	%			
		Lat	o Fort Blank Range	1.82	units			

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346	Page 7 of 25			
QC Batch Number:	GCMS/SEMI-8928					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
LFBLANK-57576						
	Acenaphthylene	Lab Fort Bl. Av. Rec	98.31	%		
		LFB Duplicate RPD	1.85	%	0-30	
	Aniline	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	0.69	mg/kg		
		Lab Fort Blk. % Rec.	41.22	%	10-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort BI. Fnd	0.70	mg/kg		
		Dup Lab Fort BI %Rec	42.04	%		
		Lab Fort Blank Range	0.82	units		
		Lab Fort Bl. Av. Rec	41.63	%		
		LFB Duplicate RPD	1.97	%	0-50	
	Anthracene	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.71	mg/kg		
		Lab Fort Blk. % Rec.	102.52	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort Bl. Fnd	1.65	mg/kg		
		Dup Lab Fort BI %Rec	98.76	%		
		Lab Fort Blank Range	3.76	units		
		Lab Fort Bl. Av. Rec	100.64	%		
		LFB Duplicate RPD	3.74	%	0-30	
	Benzo(a)anthracene	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.70	mg/kg		
		Lab Fort Blk. % Rec.	101.90	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort BI. Fnd	1.67	mg/kg		
		Dup Lab Fort BI %Rec	100.06	%		
		Lab Fort Blank Range	1.84	units		
		Lab Fort Bl. Av. Rec	100.98	%		
	_ /.	LFB Duplicate RPD	1.82	%	0-30	
	Benzo(a)pyrene	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.64	mg/kg	10.110	
		Lab Fort Blk. % Rec.	98.14	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort BI. Fnd	1.60	mg/kg		
		Dup Lab Fort BI %Rec	95.90	%		
		Lab Fort Blank Range	2.24	units		
		Lap Fort BI. AV. Rec	97.02	% 0/	0.20	
	Donzo(b)fluorozthaza		2.31	% ma∥:≂	0-30	
	Benzo(b)nuorantnene	Lap Fort Blank Amt.	1.0/	mg/kg		
			1.54	тту/к <u>у</u> ₀/	40.140	
			92.54	70 ma/ka	40-140	
			1.0/	mg/kg		
		очр сар нопт ві. ній	1.54	mg/kg		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 8	8 of 25
QC Batch Number:	GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57576					
	Benzo(b)fluoranthene	Dup Lab Fort BI %Rec	92.12	%	
		Lab Fort Blank Range	0.42	units	
		Lab Fort Bl. Av. Rec	92.33	%	
		LFB Duplicate RPD	0.45	%	0-30
	Benzo(g,h,i)perylene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.94	mg/kg	
		Lab Fort Blk. % Rec.	116.40	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.82	mg/kg	
		Dup Lab Fort BI %Rec	109.04	%	
		Lab Fort Blank Range	7.36	units	
		Lab Fort Bl. Av. Rec	112.72	%	
		LFB Duplicate RPD	6.53	%	0-30
	Benzoic Acid	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	0.76	mg/kg	
		Lab Fort Blk. % Rec.	45.30	%	30-130
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	0.62	mg/kg	
		Dup Lab Fort BI %Rec	37.20	%	
		Lab Fort Blank Range	8.10	units	
		Lab Fort Bl. Av. Rec	41.25	%	
		LFB Duplicate RPD	19.64	%	0-50
	Bis(2-chloroethyl)ether	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.63	mg/kg	
		Lab Fort Blk. % Rec.	97.80	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.60	mg/kg	
		Dup Lab Fort BI %Rec	96.20	%	
		Lab Fort Blank Range	1.60	units	
		Lab Fort Bl. Av. Rec	97.00	%	
		LFB Duplicate RPD	1.65	%	0-30
	Bis(2-chloroethoxy)methane	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.62	mg/kg	
		Lab Fort Blk. % Rec.	96.98	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.63	mg/kg	
		Dup Lab Fort BI %Rec	97.52	%	
		Lab Fort Blank Range	0.54	units	
		Lab Fort Bl. Av. Rec	97.25	%	
		LFB Duplicate RPD	0.56	%	0-30
	Bis(2-chloroisopropyl)ether	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	2.22	mg/kg	
		Lab Fort Blk. % Rec.	133.38	%	40-140

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 9 of 25		
QC Batch Number:	GCMS/SEMI-8928					
Sample Id	Analysis	QC Analy	vsis	Values	Units	Limits
LFBLANK-57576						
	Bis(2-chloroisopropyl)ether	Dup Lab F	ort BI Amt.	1.67	mg/kg	
		Dup Lab F	ort Bl. Fnd	2.17	mg/kg	
		Dup Lab F	ort BI %Rec	130.32	%	
		Lab Fort E	lank Range	3.06	units	
		Lab Fort E	I. Av. Rec	131.85	%	
		LFB Dupli	cate RPD	2.32	%	0-30
	Bis(2-ethylhexyl)phthalate	Lab Fort E	lank Amt.	1.67	mg/kg	
		Lab Fort E	lk. Found	2.27	mg/kg	
		Lab Fort E	lk. % Rec.	136.30	%	40-140
		Dup Lab F	ort BI Amt.	1.67	mg/kg	
		Dup Lab F	ort Bl. Fnd	2.03	mg/kg	
		Dup Lab F	ort BI %Rec	122.08	%	
		Lab Fort E	lank Range	14.22	units	
		Lab Fort E	I. Av. Rec	129.19	%	
		LFB Dupli	cate RPD	11.01	%	0-30
	4-Bromophenyl phenyl ether	Lab Fort E	lank Amt.	1.67	mg/kg	
		Lab Fort E	lk. Found	1.69	mg/kg	
		Lab Fort E	lk. % Rec.	101.62	%	40-140
		Dup Lab F	ort BI Amt.	1.67	mg/kg	
		Dup Lab F	ort Bl. Fnd	1.63	mg/kg	
		Dup Lab F	ort BI %Rec	97.56	%	
		Lab Fort E	lank Range	4.06	units	
		Lab Fort E	I. Av. Rec	99.59	%	
		LFB Dupli	cate RPD	4.08	%	0-30
	Butylbenzylphthalate	Lab Fort E	lank Amt.	1.67	mg/kg	
		Lab Fort E	lk. Found	2.17	mg/kg	
		Lab Fort E	lk. % Rec.	130.42	%	40-140
		Dup Lab F	ort BI Amt.	1.67	mg/kg	
		Dup Lab F	ort Bl. Fnd	1.98	mg/kg	
		Dup Lab F	ort BI %Rec	119.02	%	
		Lab Fort E	lank Range	11.40	units	
		Lab Fort E	I. Av. Rec	124.72	%	
		LFB Dupli	cate RPD	9.14	%	0-30
	4-Chloroaniline	Lab Fort E	llank Amt.	1.67	mg/kg	
		Lab Fort E	lk. Found	0.58	mg/kg	
		Lab Fort E	lk. % Rec.	34.86	%	10-140
		Dup Lab F	ort BI Amt.	1.67	mg/kg	
		Dup Lab F	ort Bl. Fnd	0.50	mg/kg	
		Dup Lab F	ort BI %Rec	29.84	%	
		Lab Fort E	lank Range	5.02	units	
		Lab Fort E	I. Av. Rec	32.35	%	
		LFB Dupli	cate RPD	15.52	%	0-30
	2-Chloronaphthalene	Lab Fort E	lank Amt.	1.67	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 10 of 25			
QC Batch Number:	GCMS/SEMI-8928						
Sample Id	Analysis	QC Analysis	Values	Units	Limits		
LFBLANK-57576							
	2-Chloronaphthalene	Lab Fort Blk. Found	1.53	mg/kg			
		Lab Fort Blk. % Rec.	91.54	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort Bl. Fnd	1.52	mg/kg			
		Dup Lab Fort BI %Rec	91.16	%			
		Lab Fort Blank Range	0.38	units			
		Lab Fort Bl. Av. Rec	91.35	%			
		LFB Duplicate RPD	0.42	%	0-30		
	4-Chlorophenylphenyl ether	Lab Fort Blank Amt.	1.67	mg/kg			
		Lab Fort Blk. Found	1.63	mg/kg			
		Lab Fort Blk. % Rec.	97.64	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort BI. Fnd	1.57	mg/kg			
		Dup Lab Fort BI %Rec	94.42	%			
		Lab Fort Blank Range	3.22	units			
		Lab Fort Bl. Av. Rec	96.03	%			
		LFB Duplicate RPD	3.35	%	0-30		
	Chrysene	Lab Fort Blank Amt.	1.67	mg/kg			
		Lab Fort Blk. Found	1.72	mg/kg			
		Lab Fort Blk. % Rec.	103.22	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort Bl. Fnd	1.65	mg/kg			
		Dup Lab Fort BI %Rec	99.26	%			
		Lab Fort Blank Range	3.96	units			
		Lab Fort Bl. Av. Rec	101.24	%			
		LFB Duplicate RPD	3.91	%	0-30		
	Dibenz(a,h)anthracene	Lab Fort Blank Amt.	1.67	mg/kg			
		Lab Fort Blk. Found	1.81	mg/kg			
		Lab Fort Blk. % Rec.	108.74	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort Bl. Fnd	1.87	mg/kg			
		Dup Lab Fort BI %Rec	112.18	%			
		Lab Fort Blank Range	3.44	units			
		Lab Fort Bl. Av. Rec	110.46	%			
		LFB Duplicate RPD	3.11	%	0-30		
	Dibenzofuran	Lab Fort Blank Amt.	1.67	mg/kg			
		Lab Fort Blk. Found	1.48	mg/kg			
		Lab Fort Blk. % Rec.	89.08	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort Bl. Fnd	1.46	mg/kg			
		Dup Lab Fort BI %Rec	87.58	%			
		Lab Fort Blank Range	1.50	units			
		Lab Fort Bl. Av. Rec	88.33	%			

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 1	1 of 25
QC Batch Number:	GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57576					
	Dibenzofuran	LFB Duplicate RPD	1.70	%	0-30
	3,3'-Dichlorobenzidine	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	0.70	mg/kg	
		Lab Fort Blk. % Rec.	42.14	%	20-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	0.63	mg/kg	
		Dup Lab Fort BI %Rec	38.06	%	
		Lab Fort Blank Range	4.08	units	
		Lab Fort Bl. Av. Rec	40.10	%	
		LFB Duplicate RPD	10.17	%	0-50
	Diethylphthalate	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.69	mg/kg	
		Lab Fort Blk. % Rec.	101.62	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.61	mg/kg	
		Dup Lab Fort BI %Rec	96.56	%	
		Lab Fort Blank Range	5.06	units	
		Lab Fort Bl. Av. Rec	99.09	%	
		LFB Duplicate RPD	5.11	%	0-30
	Dimethylphthalate	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.61	mg/kg	
		Lab Fort Blk. % Rec.	96.88	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.60	mg/kg	
		Dup Lab Fort BI %Rec	95.70	%	
		Lab Fort Blank Range	1.18	units	
		Lab Fort Bl. Av. Rec	96.29	%	
		LFB Duplicate RPD	1.23	%	0-30
	Di-n-butylphthalate	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.73	mg/kg	
		Lab Fort Blk. % Rec.	103.68	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.66	mg/kg	
		Dup Lab Fort BI %Rec	99.62	%	
		Lab Fort Blank Range	4.06	units	
		Lab Fort Bl. Av. Rec	101.65	%	
		LFB Duplicate RPD	3.99	%	0-30
	2,4-Dinitrotoluene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.65	mg/kg	
		Lab Fort Blk. % Rec.	98.94	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.57	mg/kg	
		Dup Lab Fort BI %Rec	93.96	%	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Report Date:	12/11/2006 Lims E	Lims Bat # : LIMT-02346		Page 12 of 25		
QC Batch Number:	GCMS/SEMI-8928					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
LFBLANK-57576						
	2,4-Dinitrotoluene	Lab Fort Blank Range	4.98	units		
		Lab Fort Bl. Av. Rec	96.45	%		
		LFB Duplicate RPD	5.16	%	0-30	
	2,6-Dinitrotoluene	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.66	mg/kg		
		Lab Fort Blk. % Rec.	99.86	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort Bl. Fnd	1.60	mg/kg		
		Dup Lab Fort BI %Rec	95.84	%		
		Lab Fort Blank Range	4.02	units		
		Lab Fort Bl. Av. Rec	97.85	%		
		LFB Duplicate RPD	4.11	%	0-30	
	1,2-Diphenylhydrazine (as Azobenzene	e) Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.83	mg/kg		
		Lab Fort Blk. % Rec.	109.94	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort Bl. Fnd	1.72	mg/kg		
		Dup Lab Fort BI %Rec	103.02	%		
		Lab Fort Blank Range	6.92	units		
		Lab Fort Bl. Av. Rec	106.48	%		
		LFB Duplicate RPD	6.50	%	0-30	
	Di-n-octylphthalate	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.79	mg/kg		
		Lab Fort Blk. % Rec.	107.18	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort Bl. Fnd	1.66	mg/kg		
		Dup Lab Fort BI %Rec	99.44	%		
		Lab Fort Blank Range	7.74	units		
		Lab Fort Bl. Av. Rec	103.31	%		
		LFB Duplicate RPD	7.49	%	0-30	
	Fluoranthene	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.49	mg/kg		
		Lab Fort Blk. % Rec.	89.30	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		
		Dup Lab Fort Bl. Fnd	1.52	mg/kg		
		Dup Lab Fort BI %Rec	91.28	%		
		Lab Fort Blank Range	1.98	units		
		Lab Fort Bl. Av. Rec	90.29	%	0.00	
	-	LFB Duplicate RPD	2.19	%	0-30	
	Fluorene	Lab Fort Blank Amt.	1.67	mg/kg		
		Lab Fort Blk. Found	1.72	mg/kg	40.4.5	
		Lab Fort Blk. % Rec.	103.12	%	40-140	
		Dup Lab Fort BI Amt.	1.67	mg/kg		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 1	13 of 25
QC Batch Number:	GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
_FBLANK-57576					
	Fluorene	Dup Lab Fort Bl. Fnd	1.66	mg/kg	
		Dup Lab Fort BI %Rec	99.78	%	
		Lab Fort Blank Range	3.34	units	
		Lab Fort Bl. Av. Rec	101.45	%	
		LFB Duplicate RPD	3.29	%	0-30
	Hexachlorobenzene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.65	mg/kg	
		Lab Fort Blk. % Rec.	99.24	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.60	mg/kg	
		Dup Lab Fort BI %Rec	96.06	%	
		Lab Fort Blank Range	3.18	units	
		Lab Fort Bl. Av. Rec	97.65	%	
		LFB Duplicate RPD	3.26	%	0-30
	Hexachlorobutadiene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.44	mg/kg	
		Lab Fort Blk. % Rec.	86.12	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.46	mg/kg	
		Dup Lab Fort BI %Rec	87.30	%	
		Lab Fort Blank Range	1.18	units	
		Lab Fort Bl. Av. Rec	86.71	%	
		LFB Duplicate RPD	1.36	%	0-30
	Hexachlorocyclopentadiene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.67	mg/kg	
		Lab Fort Blk. % Rec.	99.96	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.84	mg/kg	
		Dup Lab Fort BI %Rec	110.20	%	
		Lab Fort Blank Range	10.24	units	
		Lab Fort Bl. Av. Rec	105.08	%	
		LFB Duplicate RPD	9.74	%	0-30
	Hexachloroethane	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.50	mg/kg	
		Lab Fort Blk. % Rec.	90.26	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.47	mg/kg	
		Dup Lab Fort BI %Rec	87.96	%	
		Lab Fort Blank Range	2.30	units	
		Lab Fort Bl. Av. Rec	89.11	%	
		LFB Duplicate RPD	2.58	%	0-30
	Indeno(1,2,3-cd)pyrene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.92	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page ?	14 of 25
QC Batch Number:	GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57576					
	Indeno(1,2,3-cd)pyrene	Lab Fort Blk. % Rec.	115.04	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.85	mg/kg	
		Dup Lab Fort BI %Rec	111.24	%	
		Lab Fort Blank Range	3.80	units	
		Lab Fort Bl. Av. Rec	113.14	%	
		LFB Duplicate RPD	3.36	%	0-30
	Isophorone	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.49	mg/kg	
		Lab Fort Blk. % Rec.	89.36	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.51	mg/kg	
		Dup Lab Fort BI %Rec	90.66	%	
		Lab Fort Blank Range	1.30	units	
		Lab Fort Bl. Av. Rec	90.01	%	
		LFB Duplicate RPD	1.44	%	0-30
	2-Methylnaphthalene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.34	mg/kg	
		Lab Fort Blk. % Rec.	80.60	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.28	mg/kg	
		Dup Lab Fort BI %Rec	76.98	%	
		Lab Fort Blank Range	3.62	units	
		Lab Fort Bl. Av. Rec	78.79	%	
		LFB Duplicate RPD	4.59	%	0-30
	2-Nitroaniline	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.58	mg/kg	
		Lab Fort Blk. % Rec.	94.86	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.50	mg/kg	
		Dup Lab Fort BI %Rec	90.18	%	
		Lab Fort Blank Range	4.68	units	
		Lab Fort Bl. Av. Rec	92.52	%	
		LFB Duplicate RPD	5.06	%	0-30
	3-Nitroaniline	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	0.97	mg/kg	
		Lab Fort Blk. % Rec.	58.32	%	30-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	0.89	mg/kg	
		Dup Lab Fort BI %Rec	53.12	%	
		Lab Fort Blank Range	5.20	units	
		Lab Fort Bl. Av. Rec	55.72	%	
		LFB Duplicate RPD	9.33	%	0-30

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-0234	6	Page 1	5 of 25
QC Batch Number:	GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57576					
	Nitrobenzene	Lab Fort Blank	Amt. 1.67	mg/kg	
		Lab Fort Blk. Fo	ound 1.51	mg/kg	
		Lab Fort Blk. %	Rec. 90.70	%	40-140
		Dup Lab Fort B	l Amt. 1.67	mg/kg	
		Dup Lab Fort B	l. Fnd 1.53	mg/kg	
		Dup Lab Fort B	l %Rec 91.52	%	
		Lab Fort Blank	Range 0.82	units	
		Lab Fort BI. Av	. Rec 91.11	%	
		LFB Duplicate	RPD 0.90	%	0-30
	N-Nitroso-di-n-propylamine	Lab Fort Blank	Amt. 1.67	mg/kg	
		Lab Fort Blk. For	ound 1.65	mg/kg	
		Lab Fort Blk. %	Rec. 98.88	%	40-140
		Dup Lab Fort B	l Amt. 1.67	mg/kg	
		Dup Lab Fort B	l. Fnd 1.59	mg/kg	
		Dup Lab Fort B	l %Rec 95.68	%	
		Lab Fort Blank	Range 3.20	units	
		Lab Fort BI. Av	. Rec 97.28	%	
		LFB Duplicate	RPD 3.29	%	0-30
	N-Nitrosodiphenylamine	Lab Fort Blank	Amt. 1.67	mg/kg	
		Lab Fort Blk. For	ound 2.03	mg/kg	
		Lab Fort Blk. %	Rec. 122.02	%	80-180
		Dup Lab Fort B	l Amt. 1.67	mg/kg	
		Dup Lab Fort B	l. Fnd 1.90	mg/kg	
		Dup Lab Fort B	l %Rec 114.24	%	
		Lab Fort Blank	Range 7.78	units	
		Lab Fort BI. Av	. Rec 118.13	%	
		LFB Duplicate	RPD 6.59	%	0-30
	Phenanthrene	Lab Fort Blank	Amt. 1.67	mg/kg	
		Lab Fort Blk. Fo	ound 1.73	mg/kg	
		Lab Fort Blk. %	Rec. 104.04	%	40-140
		Dup Lab Fort B	I Amt. 1.67	mg/kg	
		Dup Lab Fort B	I. Fnd 1.67	mg/kg	
		Dup Lab Fort B	l %Rec 100.44	%	
		Lab Fort Blank	Range 3.60	units	
		Lab Fort BI. Av	. Rec 102.24	%	
		LFB Duplicate	RPD 3.52	%	0-30
	Pyrene	Lab Fort Blank	Amt. 1.67	mg/kg	
		Lab Fort Blk. Fo	ound 2.07	mg/kg	
		Lab Fort Blk. %	Rec. 124.26	%	40-140
		Dup Lab Fort B	I Amt. 1.67	mg/kg	
		Dup Lab Fort B	l. Fnd 1.82	mg/kg	
		Dup Lab Fort B	l %Rec 109.32	%	
		Lab Fort Blank	Range 14.94	units	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

QC Batch NumberGCMS/SEMI-8928Sample IAnalysisOC AnalysisValuesUnitsLFBLab Fort Bl. Av. Rec116.79%LFB Duplicate RPD12.79%0.301.2,4-TrichlorobenzeneLab Fort Blank Amt.16.77mg/kgLab Fort Bl. Found1.43mg/kg10.10Lab Fort Bl. Found1.43mg/kg10.10Lab Fort Bl. Kreand1.63mg/kg10.10Dup Lab Fort Bl. Arth1.67mg/kg10.10Lab Fort Bl. Kreand1.63mg/kg10.10Dup Lab Fort Bl. Kreand1.64mg/kg10.10Lab Fort Bl. Kreand1.62mg/kg10.10Lab Fort Bl. Kreand1.63mg/kg10.10Lab Fort Bl. Kreand1.64mg/kg10.10Lab Fort Bl. Kreand1.64mg/kg10.10<	Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 7	16 of 25
Sample Id Analysis QC Analysis Values Units Limits LFBLANK-57576 Pyrene Lab Fort BL Av. Rec 116.79 % 0-30 1.2,4-Trichlorobenzene Lab Fort Blk, Sund 1.67 mg/kg 0-40 0-40 Lab Fort Blk, % Rec 65.92 % 40-140 Dup Lab Fort Blk, % Rec 65.80 % 0-40 Lab Fort Blk, % Rec 65.86 % 0-30 Lab Fort Blk, % Rec 67.22 % 0-30 Lab Fort Blk, % Rec 67.22 % 0-30 Lab Fort Blk, % Rec 67.22 % 0-30 Lab Fort Blk, % Rec 97.22 % 0-30 Lab Fort Blk, Found 1.63 mg/kg 0-30 Lab Fort Blk, Found 1.63 mg/kg	QC Batch Number:	GCMS/SEMI-8928				
LFBLANK-57576PyreneLab Fort BL Av. Rec116.79%01.2.4PyreneLab Fort Bl. Av. Rec12.79%0.301.2.4Lab Fort Bl.	Sample Id	Analysis	QC Analysis	Values	Units	Limits
PyrineLab Fort Bl. Av. Rec16.79%LFB Ouplicate RPD12.79%0.301,2,4-TrichlorobenzeneLab Fort Blark Amt.1.47mg/kgLab Fort Blark Ram.1.43mg/kg40-140Dup Lab Fort Bl. Found1.43mg/kg1.43Dup Lab Fort Bl. Found1.43mg/kg1.43Dup Lab Fort Bl. Found1.43mg/kg1.43Dup Lab Fort Bl. Found1.43mg/kg1.43Dup Lab Fort Bl. Found1.43mg/kg1.43Lab Fort Blark Range0.12units1.43Lab Fort Blark Range0.12units1.43Lab Fort Blark Kant1.67mg/kg1.43Lab Fort Blark Kant1.67mg/kg1.43Lab Fort Blark Second1.46mg/kg1.43Lab Fort Blark Second1.46mg/kg1.43Lab Fort Blark Second1.46mg/kg1.43Lab Fort Blark Range0.34%1.43Lab Fort Blark Range0.34%1.43Lab Fort Blark Range0.22%0.30Lab Fort Blark Range0.23%0.30 <trr>Lab Fort Blark Rang</trr>	LFBLANK-57576					
LFB Duplicate RPD 12.79 % 0-30 1.2.4 - Trichlorobenzene Lab Fort Bik, Found 1.43 mg/kg Lab Fort Bik, Found 1.43 mg/kg Lab Fort Bik, Kec. 85.92 % 40-140 Dup Lab Fort Bi Amt. 1.67 mg/kg Dup Lab Fort Bi MRec 85.80 % Lab Fort Bink Range 0.12 units Lab Fort Bink Range 0.12 units Lab Fort Bik Range 0.12 mg/kg Lab Fort Bik, Range 0.12 mg/kg Lab Fort Bik, Range 0.12 mg/kg Lab Fort Bik, Rec 97.22 % 0-30 Lab Fort Bik, Ne Rec 97.23 % 0-130 Dup Lab Fort Bi MRec 95.35 % 0-30 Lab Fort Bik Ne Rec 97.83 % 0-30 Lab Fort Bik Ne Round 1.66 mg/kg 0-30 Lab Fort Bik Mart 1.67 mg/kg 0-30 Lab Fort Bik Mart 1.67 mg/kg 0-30		Pyrene	Lab Fort Bl. Av. Rec	116.79	%	
1.2.4-Trichlorobenzene Lab Fort Bik, Kmc. 1.6.7 mg/kg Lab Fort Bik, Kmc. 1.6.7 mg/kg Dup Lab Fort Bi K, Kmc. 1.6.7 mg/kg Dup Lab Fort Bi K, Kmc. 1.6.7 mg/kg Dup Lab Fort Bi KRc. 85.80 % Lab Fort Bi K, Nce. 85.80 % Lab Fort Bi K, Nce. 85.86 % Lab Fort Bi K, Found 1.62 mg/kg Lab Fort Bi K, Found 1.62 mg/kg Lab Fort Bi K, Found 1.62 mg/kg Lab Fort Bi K, Found 1.66 mg/kg Lab Fort Bi K, Rec. 97.32 % 0-30 Dup Lab Fort Bi K, Rec. 93.48 % 1.61 1.61 Lab Fort Bi K, Rec. 95.35 % 0-30 Lab Fort Bi K, Rec. 95.35 % 0-30 Lab Fort Bi K, Rec. 87.88 % 0.130 Dup Lab Fort Bi M, T. 1.67 mg/kg <td></td> <td></td> <td>LFB Duplicate RPD</td> <td>12.79</td> <td>%</td> <td>0-30</td>			LFB Duplicate RPD	12.79	%	0-30
Lab Fort Bik. **, Rec.1.43mg/kgLab Fort Bi. **, Rec.85.92%40-140Dup Lab Fort Bi Ant.1.67mg/kgDup Lab Fort Bi Ant.1.67mg/kgDup Lab Fort Bi Rec.85.80%Lab Fort Bin Ray, Rec.85.80%Lab Fort Bin Ray, Rec.85.80%Lab Fort Bin Na, Rec.87.80%Lab Fort Bink, Name1.68%Lab Fort Bink, Mark.1.67mg/kgLab Fort Bink, Mark.1.67mg/kgLab Fort Bink, Mark.1.67mg/kgDup Lab Fort Bi Ki, % Rec.97.22%30-130Dup Lab Fort Bi Ki, % Rec.93.48%Lab Fort Bink, % Rec.93.48%Lab Fort Bink, Name3.74unitsLab Fort Bink, Name3.74unitsLab Fort Bink, Name3.74unitsLab Fort Bink, Name93.55%Lab Fort Bink, Name1.67mg/kgLab Fort Bink, Name1.67mg/kgLab Fort Bink, Secu.67.38%Lab Fort Bink, Found1.46mg/kgLab Fort Bink, Kenc87.48%Lab Fort Bink, Kenc89.00%Qu Lab Fort Bink, Kenc89.00%Lab Fort Bink, Kenc89.00<		1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	1.67	mg/kg	
Lab Fort Bik. % Rec. 85.92 % 40-140 Dup Lab Fort Bi Arnt. 1.67 mg/kg Dup Lab Fort Bi KRec 85.80 % Lab Fort Bi MRec 97.22 % 0-30 Lab Fort Bi MRec 97.22 % 0-310 Dup Lab Fort Bi MRec 97.22 % 0-310 Dup Lab Fort Bi MRec 97.22 % 0-310 Dup Lab Fort Bi MRec 97.22 % 0-30 Lab Fort Bi MRec 97.22 % 0-30 Lab Fort Bi MRec 97.22 % 0-30 Lab Fort Bi MRec 97.34 % Lab Fort Bi MRec 97.34 % Lab Fort Bi MRec 97.32 % 0-30 Lab Fort Bi MRec 97.34 % Dup Lab Fort Bi MRec 97.34 % Dup Lab Fort Bi MRec 97.34 % Lab Fort Bi MRec 97.35 % Lab Fort Bi MRec 97.34 % Dup Lab Fort Bi MRec 97.34 % Dup Lab Fort Bi MRec 97.34 % Lab Fort Bi MRec 97.35 % Lab Fort Bi MRec 97.32 % 0-30 Lab Fort Bi MRec 97.38 % 0-30 Lab Fort Bi MRec 97.38 % 0-30 Lab Fort Bi MRec 97.38 % 0-30 Lab Fort Bi MRec 97.58 % Lab Fort Bi MRec 97.58 % Lab Fort Bi MRec 87.58 % Lab Fort Bi MRec 89.00 % 0-30 Lab Fort Bi MRec 89.00 % Lab Fort Bi MRec 89.00 % 0-30 Lab Fort Bi MRec 99.00 % 0-30 Lab Fort Bi MRec 99.00 % 0-30 Dup Lab Fort Bi MRec 99.00 % 0-30 Dup Lab Fort Bi MRec 99.00 % 0-30 Lab Fort Bi MRec 99.00 %			Lab Fort Blk. Found	1.43	mg/kg	
Dup Lab Fort BI Amt.1.67mg/kgDup Lab Fort BI %Rec85.80%Lab Fort BI %Rec85.80%Lab Fort BI Av. Rec85.86%LFB Duplicate RPD0.14%0.304Chloro-3-methylphenolLab Fort BI. Av. Rec97.22%2Chloro-3-methylphenolLab Fort BI. K. % Rec.97.22%2Chloro-3-methylphenolLab Fort BI. K. % Rec.97.22%2Chloro-3-methylphenolLab Fort BI. K. % Rec.97.22%2Chloro-3-methylphenolLab Fort BI. K. % Rec.97.22%2ChlorophenolLab Fort BI. K. % Rec.93.48%Lab Fort BI. K. % Rec.93.48%Lab Fort BI. K. % Rec.95.35%2ChlorophenolLab Fort BI. K. % Rec.87.38%2ChlorophenolLab Fort BI. K. % Rec.87.48%Lab Fort BI. K. % Rec.89.00%2ChlorophenolLab Fort BI. K. % Rec.89.00%2ChlorophenolLab Fort BI. K. % Rec.89.00%2A-DichlorophenolLab Fort BI. K. % Rec.89.00%			Lab Fort Blk. % Rec.	85.92	%	40-140
Dup Lab Fort BI. Fnd 1.43 mg/kg Dup Lab Fort BI %Rec 85.80 % Lab Fort Blank Range 0.12 units Lab Fort Blank Range 0.12 units Lab Fort Blank Ant. 1.67 mg/kg Lab Fort Blank Ant. 1.67 mg/kg Lab Fort Blank Ant. 1.67 mg/kg Lab Fort Blank Range 9.722 % 0-130 Dup Lab Fort Bl MRec 9.74 wits - Lab Fort Blank Range 9.74 wits - Dup Lab Fort Bl MRec 9.74 wits - Lab Fort Blank Range 9.34 % - Lab Fort Blank Range 9.34 % - Lab Fort Blank Range 9.34 wits - Lab Fort Blank Range 9.34 wits - Lab Fort Blank Range 9.35 % -30 Lab Fort Blank Ant. 1.67 mg/kg - Lab Fort Blank Ant. 1.67 mg/kg -			Dup Lab Fort BI Amt.	1.67	mg/kg	
Dup Lab Fort BI %Rec 85.80 % Lab Fort BI Av. Rec 85.86 % Lab Fort BI Av. Rec 85.86 % L4F BD uplicate RPD 0.14 % 0-30 4-Chloro-3-methylphenol Lab Fort BI Av. Rec. 97.22 % 30-130 Lab Fort BI K. Found 1.62 mg/kg 162 163 Lab Fort BI K. Found 1.66 mg/kg 162 163			Dup Lab Fort Bl. Fnd	1.43	mg/kg	
Lab Fort Blank Range 0.12 units Lab Fort Bl. Av. Rec 886 % LFB Duplicate RPD 0.14 % 0-30 Lab Fort Bl.k. Found 1.67 mg/kg 30-130 Lab Fort Bl. Shee 97.22 % 30-130 Dup Lab Fort Bl. Amt. 1.67 mg/kg 167 Dup Lab Fort Bl. MRec 93.48 % 167 Lab Fort Blank Range 3.74 units 167 Lab Fort Bl. MRec 95.35 % 0-30 Lab Fort Blank Range 3.74 units 167 Lab Fort Bl. Av. Rec 95.35 % 0-30 Lab Fort Blank Range 0.20 0.30 30-130 Lab Fort Bl. Kond 1.66 mg/kg 30-130 Lab Fort Blank Amt. 1.67 mg/kg 30-130			Dup Lab Fort BI %Rec	85.80	%	
Lab Fort BL Av. Rec 85.86 % LFB Duplicate RPD 0.41 % 0.30 4-Chioro-3-methylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Bl. Sec. 97.22 % 30-130 Dup Lab Fort Bl. MR Rec. 97.42 % 30-130 Dup Lab Fort Bl. Sec. 97.34 % - Lab Fort Bl. MR Rec. 93.48 % - Lab Fort Bl. NR Rec 93.48 % - Lab Fort Bl. NR Rec 95.35 % - Lab Fort Bl. NR Rec 95.35 % - Lab Fort Bl. NR Rec 95.35 % - Lab Fort Bl. NR Rec 87.88 % - Lab Fort Bl. NR Rec 87.88 % - Lab Fort Bl. NR Rec 87.88 % - Dup Lab Fort Bl. Sound 1.46 mg/kg - Lab Fort Bl. Av. Rec 87.88 % - Lab Fort Bl. Arc. Rec 87.88 % - Lab Fort Bl. Arc. Rec 87.88 % - Lab Fort Bl. Arc.			Lab Fort Blank Range	0.12	units	
LFB Duplicate RPD0.14%0-304-Chloro-3-methylphenolLab Fort Blank Antt.1.67mg/kgLab Fort Blk. Found1.62mg/kgLab Fort Bl.K. % Rec.97.22%30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.67mg/kgLab Fort Blank Range3.74unitsLab Fort Blank Range3.74unitsLab Fort Blank Range3.74unitsLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Bl. % Rec.87.38%Lab Fort Bl. % Rec87.48%Lab Fort Bl. % Rec87.48%Lab Fort Bl. % Rec87.48%Lab Fort Bl. % Rec87.48%Lab Fort Bl. Av. Rec87.48%Lab Fort Blank Range0.20unitsLab Fort Blank Range0.23%0-30Lab Fort Blank Range0.24%0-30Lab Fort Blank Range0.24%0-30Lab Fort Blank Range0.24%0-30Lab Fort Blank Range0.24%0-30Lab Fort Blank Range0.04%%Lab Fort Blank Range </td <td></td> <td></td> <td>Lab Fort Bl. Av. Rec</td> <td>85.86</td> <td>%</td> <td></td>			Lab Fort Bl. Av. Rec	85.86	%	
4-Chloro-3-methylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. % Rec. 97.22 % 30-130 Dup Lab Fort Bl. Fnund 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.66 mg/kg Dup Lab Fort Bl. Fnd 1.66 mg/kg Lab Fort Blank Range 3.74 units Lab Fort Blank Range 3.74 units Lab Fort Blank Range 3.74 mg/kg Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Range 0.20 units Lab Fort Blank Range 0.20 units Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Range 0.20 units Lab Fort Blank Range 0.23			LFB Duplicate RPD	0.14	%	0-30
Lab Fort Bik. Found 1.62 mg/kg Lab Fort Bik. % Rec. 97.22 % 30-130 Dup Lab Fort Bi. % Rec. 97.22 % 30-130 Dup Lab Fort Bi. Fnd 1.66 mg/kg 167 Dup Lab Fort Bi. Fnd 1.68 mg/kg 167 Dup Lab Fort Bi. Av. Rec 95.35 % 168 Lab Fort Bi. Av. Rec 95.35 % 0-30 Lab Fort Bi. Av. Rec 97.32 % 0-30 Lab Fort Bi. Av. Rec 97.38 % 30-130 Lab Fort Bik. Found 1.46 mg/kg 167 Lab Fort Bi. Kound 1.46 mg/kg 30-130 Dup Lab Fort Bi. Kound 1.46 mg/kg 30-130 Dup Lab Fort Bi. Found 1.46 mg/kg 30-130 Dup Lab Fort Bi. Second 87.48 % 30-130 Dup Lab Fort Bi. Kound 1.46 mg/kg 30-130 Dup Lab Fort Bi. Kound 1.48 mg/kg 30-130 Dup Lab Fort Bi. Foud 1.48 mg/kg 30-130 Dup Lab Fort Bi. Foud 1.48		4-Chloro-3-methylphenol	Lab Fort Blank Amt.	1.67	mg/kg	
Lab Fort Bik. % Rec.97.22%30-130Dup Lab Fort Bi Amt.1.67mg/kgDup Lab Fort Bi. Fnd1.56mg/kgDup Lab Fort Bi. Spect93.48%Lab Fort Bi. Aw. Rec95.35%Lab Fort Biank Range3.74unitsLab Fort Biank Amt.1.67mg/kgLab Fort Biank Amt.1.67mg/kgLab Fort Biank Amt.1.67mg/kgLab Fort Biank Amt.1.67mg/kgLab Fort Bik. % Rec.87.38%Oup Lab Fort Bi. Kound1.46mg/kgDup Lab Fort Bi. Kound1.46mg/kgDup Lab Fort Bi. Aw. Rec87.48%Lab Fort Bilank Amt.1.67mg/kgDup Lab Fort Bi. Aw. Rec87.48%Lab Fort Bilank Range0.20unitsLab Fort Bilank Amt.1.67mg/kgLab Fort Bilank Range0.04unitsLab Fort Bilank Range0.04unitsLab Fort Bilank Range0.04winkgLab Fort Bilank Range0.04winkgLab Fort Bilank Range0.04winkgLab Fort Bilank Amt.1.67mg/kgLab Fort Bilank Amt.1.67mg/kgLa			Lab Fort Blk. Found	1.62	mg/kg	
Dup Lab Fort BI Amt. 1.67 mg/kg Dup Lab Fort BI, Fnd 1.66 mg/kg Dup Lab Fort BI %Rec 93.48 % Lab Fort BIa M Range 3.74 units Lab Fort Blank Range 3.74 units Lab Fort Blank Amage 3.92 % 0-30 2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Amt. 1.67 mg/kg 30-130 Dup Lab Fort Bl %Rec 87.38 % 30-130 Dup Lab Fort Bl %Rec 87.58 % 1.67 Dup Lab Fort Bl %Rec 87.58 % 1.67 Dup Lab Fort Bl %Rec 87.48 % 1.67 Lab Fort Blank Range 0.00 units 1.67 Lab Fort Blank Range 0.20 units 1.67 Lab Fort Blank Range 0.20 units 1.68 Lab Fort Blank Range 0.23 % 0.30 Lab Fort Blank Range 0.23 % 0.30 Lab Fort Blank Range 0.			Lab Fort Blk. % Rec.	97.22	%	30-130
Dup Lab Fort BI. Fnd 1.56 mg/kg Dup Lab Fort BI %Rec 93.48 % Lab Fort BI %Rec 93.48 % Lab Fort BI. Av. Rec 95.35 % LFB Duplicate RPD 3.92 % 0-30 2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Range 0.20 units Lab Fort Bl %Rec 87.58 % Dup Lab Fort Bl %Rec 87.48 % Lab Fort Blank Range 0.20 units Lab Fort Blank Range 0.20 units Lab Fort Blank Range 0.23 % 0-30 Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Range 0.44			Dup Lab Fort BI Amt.	1.67	mg/kg	
Dup Lab Fort Bl %Rec 93.48 % Lab Fort Blank Range 3.74 units Lab Fort Bl. Av. Rec 95.35 % 2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.46 mg/kg Lab Fort Blk. % Rec. 87.38 % 30-130 Dup Lab Fort Bl. Fnd 1.46 mg/kg Lab Fort Blank Amt. 1.67 mg/kg Dup Lab Fort Bl. NA. 1.67 mg/kg Lab Fort Blank Amge 0.20 units Lab Fort Blank Range 0.23 % -30 2,4-Dichlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Bla			Dup Lab Fort Bl. Fnd	1.56	mg/kg	
Lab Fort Blank Range 3.74 units Lab Fort Bl. Av. Rec 95.35 % LFB Duplicate RPD 3.92 % 0-30 2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.46 mg/kg Lab Fort Blk. Found 1.46 mg/kg Lab Fort Blk. Found 1.67 mg/kg Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.46 mg/kg Dup Lab Fort Bl. Av. Rec 87.58 % Lab Fort Blank Range 0.20 units Lab Fort Blank Range 0.23 % 0-30 2,4-Dichlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Bl Art. 1.67 mg/kg Lab Fort Blank Amge 0.04 % Lab Fort Bl Art. <td></td> <td></td> <td>Dup Lab Fort BI %Rec</td> <td>93.48</td> <td>%</td> <td></td>			Dup Lab Fort BI %Rec	93.48	%	
Lab Fort BI. Av. Rec 95.35 % LFB Duplicate RPD 3.92 % 0-30 2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. % Rec. 87.38 % 30-130 Dup Lab Fort Bl. K. % Rec. 87.38 % 30-130 Dup Lab Fort Bl. Fnd 1.67 mg/kg 167 Dup Lab Fort Bl. K. % Rec. 87.38 % 30-130 Dup Lab Fort Bl. Fnd 1.46 mg/kg 167 Dup Lab Fort Bl. K. % Rec. 87.58 % 168 Lab Fort Bl. Av. Rec 87.48 % 167 Lab Fort Bl. Av. Rec 87.48 % 167 Lab Fort Bl. Av. Rec 89.00 % 0-30 2,4-Dichlorophenol Lab Fort Bl. Ark 1.67 mg/kg Lab Fort Bl. Ark 1.67 mg/kg 148 mg/kg Lab Fort Bl. Ark 1.67 mg/kg 148 mg/kg Lab Fort Bl. Ark 89.00 % 0-30 148 167 16			Lab Fort Blank Range	3.74	units	
LFB Duplicate RPD 3.92 % 0-30 2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Bl.K. Found 1.46 mg/kg Lab Fort Bl.K. Rec. 87.38 % 30-130 Dup Lab Fort Bl. Amt. 1.67 mg/kg Dup Lab Fort Bl. Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.46 mg/kg Dup Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl.Amt. 1.67 mg/kg Lab Fort Bl.Amt. 1.67 mg/kg Lab Fort Bl.Amt. 1.67 mg/kg Lab Fort Bl.K. Found 1.48 mg/kg Lab Fort Bl.K. Found 1.48 mg/kg Lab Fort Bl.K. Necc. 89.00 % 30-130 Dup Lab Fort Bl.K. Found 1.48 mg/kg Lab Fort Bl.K. Necc. 89.00 % 30-130 Dup Lab Fort Bl. Fnd 1.48 mg/kg 167 Lab Fort Bl.K. Pound 1.67 mg/kg 167 Lab Fort Bl. Necc 89.04 % 0-30 Lab Fort Bl.Am. Rec 89.04			Lab Fort Bl. Av. Rec	95.35	%	
2-Chlorophenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.46 mg/kg Lab Fort Blk. WRec. 87.38 % 30-130 Dup Lab Fort Bl. Amt. 1.67 mg/kg Dup Lab Fort Bl. Find 1.46 mg/kg Dup Lab Fort Bl. Find 1.46 mg/kg Dup Lab Fort Bl. Find 1.46 mg/kg Lab Fort Bl. Find 1.46 mg/kg Dup Lab Fort Bl. Not Rec. 87.58 % Lab Fort Bl. Av. Rec 87.48 % Lab Fort Bl. Av. Rec 87.48 % Lab Fort Bl. Av. Rec 87.48 % Lab Fort Bl. Av. Rec 89.00 wo 0-30 2,4-Dichlorophenol Lab Fort Bl. Av. Rec 89.00 % 30-130 Dup Lab Fort Bl. K. Rec. 89.00 % 30-130 Dup Lab Fort Bl. NR 1.67 mg/kg Dup Lab Fort Bl. Av. Rec 89.04 % Lab Fort Bl. NR 0.04 wits Lab Fort Bl. Av. Rec 89.04 % Lab Fort Bl. Av. Rec 89.02 %			LFB Duplicate RPD	3.92	%	0-30
Lab Fort Blk. Found 1.46 mg/kg Lab Fort Blk. % Rec. 87.38 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl MRE 87.58 % Lab Fort Bl %Rec 87.58 % Lab Fort Bl %Rec 87.48 % Lab Fort Bl Av. Rec 87.48 % LFB Duplicate RPD 0.23 % 0-30 Z,4-Dichlorophenol Lab Fort BlAM. 1.67 mg/kg Lab Fort Blk. % Rec. 89.00 % 30-130 Dup Lab Fort Bl. Amt. 1.67 mg/kg Dup Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl. Fort Bl. Fort Bl. 70 mg/kg Lab Fort Bl. Amt. 1.67 mg/kg Dup Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl. Fort Bl. Fort Bl. 70 mg/kg Dup Lab Fort Bl. Fort Bl. Fort Bl. Fort M 1.48 mg/kg Dup Lab Fort Bl. Fort Bl. Fort M 1.48 mg/kg Dup Lab Fort Bl. Fort Bl. Fort M 1.48 mg/kg Dup Lab Fort Bl. Fort Bl. Fort M 1.48 mg/kg Dup Lab Fort Bl. Fort Bl. Fort M 1.48 mg/kg Dup Lab Fort Bl. Fort M 1.48 mg/kg Dup Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl. Amt. 1.67 mg/kg Lab Fort Bl. Found 1.60 mg/kg Lab Fort Bl. Fort Bl. Found 1.60 mg/kg Lab Fort Bl. Fort Bl. Found 1.60 mg/kg Lab Fort Bl. Fort Bl. Fort Bl. Fort Bl. Fort M 1.67 mg/kg Lab Fort Bl. Fort Bl. Fort Bl. Fort M 1.67 mg/kg Lab Fort Bl. Fort Bl. Fort Bl. Fort M 1.67 mg/kg		2-Chlorophenol	Lab Fort Blank Amt.	1.67	mg/kg	
Lab Fort Blk. % Rec. 87.38 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.46 mg/kg Dup Lab Fort Bl %Rec 87.58 % Lab Fort Bl MR Range 0.20 units Lab Fort Bl N. Rec 87.48 % Lab Fort Blank Range 0.20 units Lab Fort Blank Range 0.23 % 0-30 2,4-Dichlorophenol Lab Fort Blk. Namt. 1.67 mg/kg Lab Fort Blk. % Rec. 89.00 % 30-130 Dup Lab Fort Bl Matt. 1.67 mg/kg 1.67 Lab Fort Blk. % Rec. 89.00 % 30-130 Dup Lab Fort Bl Matt. 1.67 mg/kg 1.67 Dup Lab Fort Bl. Necc 89.00 % 30-130 Dup Lab Fort Bl. Antt. 1.67 mg/kg 1.67 Lab Fort Blank Range 0.04 % 0.30 Lab Fort Bl. Av. Rec 89.02 % 1.67 Lab Fort Blank Amtt. 1.67 mg/kg 1.67 Lab Fort Blank Amtt. 1.67			Lab Fort Blk. Found	1.46	mg/kg	
Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.46 mg/kg Dup Lab Fort Bl %Rec 87.58 % Lab Fort Blank Range 0.20 units Lab Fort Bl. Av. Rec 87.48 % Lab Fort Blank Range 0.23 % 0-30 2,4-Dichlorophenol 1.67 mg/kg 1.67 Lab Fort Blank Amt. 1.67 mg/kg 1.67 Dup Lab Fort Bl Amt. 1.67 mg/kg 1.67 Dup Lab Fort Bl Amt. 1.67 mg/kg 1.67 Dup Lab Fort Bl Amt. 1.67 mg/kg 1.67 Lab Fort Blank Range 0.04 % 0-30 Lab Fort Blank Range 0.04 % 0-30 Lab Fort Blank Amt. 1.67 mg/kg 1.67 Lab Fort Blank Amt. 1.67 mg/kg 1.67 Lab Fort Blank Amt. 1.67 <t< td=""><td></td><td></td><td>Lab Fort Blk. % Rec.</td><td>87.38</td><td>%</td><td>30-130</td></t<>			Lab Fort Blk. % Rec.	87.38	%	30-130
Dup Lab Fort Bl. Fnd1.46mg/kgDup Lab Fort Bl %Rec87.58%Lab Fort Blank Range0.20unitsLab Fort Bl. Av. Rec87.48%LFB Duplicate RPD0.23%0-302,4-DichlorophenolLab Fort Blank Amt.1.67mg/kgLab Fort Bl. K. Found1.48mg/kgLab Fort Bl. K. % Rec.89.00%30-130Dup Lab Fort Bl K. % Rec.89.00%30-130Dup Lab Fort Bl Mmt.1.67mg/kgDup Lab Fort Bl. Fnd1.48mg/kgDup Lab Fort Bl. NRec89.04%Lab Fort Blank Range0.04unitsLab Fort Bl. Av. Rec89.02%Lab Fort Blank Range0.04%Lab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blk. % Rec.95.78%Lab Fort Bl. K. % Rec.95.78%Lab Fort Bl. K. % Rec.95.78%Lab Fort Bl. Fnd1.67mg/kgLab Fort Bl. Fnd1.67mg/kgLab Fort Bl. Fnd1.58mg/kg			Dup Lab Fort BI Amt.	1.67	mg/kg	
Dup Lab Fort Bl %Rec87.58%Lab Fort Blank Range0.20unitsLab Fort Bl. Av. Rec87.48%LFB Duplicate RPD0.23%0-302,4-DichlorophenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.48mg/kg30-130Lab Fort Blk. % Rec.89.00%30-130Dup Lab Fort Bl Amt.1.67mg/kg148Lab Fort Bl Amt.1.67mg/kg148Lab Fort Bl Amt.1.67mg/kg148Lab Fort Bl Amt.1.67mg/kg148Lab Fort Bl NRec89.04%148Lab Fort Blank Range0.04units148Lab Fort Blank Range0.041.67mg/kgLab Fort Blank Amt.1.67mg/kg148Lab Fort Blank			Dup Lab Fort Bl. Fnd	1.46	mg/kg	
Lab Fort Blank Range0.20unitsLab Fort Bl. Av. Rec87.48%LFB Duplicate RPD0.23%0-302,4-DichlorophenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.48mg/kgLab Fort Blk. Necc.89.00%30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl. Fnd1.48mg/kgDup Lab Fort Bl. Fnd1.48mg/kgDup Lab Fort Bl. Necc89.04%Lab Fort Bl. Ant.1.67mg/kgDup Lab Fort Bl. Ant.1.67mg/kgLab Fort Bl. Av. Rec89.02%Lab Fort Bl. Av. Rec89.02%Lab Fort Bl. Av. Rec89.02%Lab Fort Bl. Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.60mg/kgLab Fort Blk. Necc.95.78%Lab Fort Blk. % Rec.95.78%Dup Lab Fort Bl Amt.1.67mg/kgLab Fort Bl K. Mecc.95.78%Solo Autor1.60mg/kgLab Fort Bl. Fnd1.58mg/kg			Dup Lab Fort BI %Rec	87.58	%	
Lab Fort BI. Av. Rec87.48%LFB Duplicate RPD0.23%0-302,4-DichlorophenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.48mg/kgLab Fort Blk. Necc.89.00%30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Necc89.04%Lab Fort Blank Range0.04unitsLab Fort Bl Av. Rec89.02%Lab Fort Bl Ant.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.60mg/kgLab Fort Blk. % Rec.95.78%Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.67mg/kgLab Fort Blk. Found1.67mg/kg			Lab Fort Blank Range	0.20	units	
LFB Duplicate RPD0.23%0-302,4-DichlorophenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.48mg/kgLab Fort Blk. % Rec.89.00%30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl. Fnd1.48mg/kgDup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl MRec89.04%Lab Fort Blank Range0.04unitsLab Fort Bl Av. Rec89.02%LFB Duplicate RPD0.04%Lab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Bl. Sound1.60mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Bl. % Rec.95.78%Dup Lab Fort Bl Amt.1.67mg/kgLab Fort Bl Amt.1.67mg/kg			Lab Fort Bl. Av. Rec	87.48	%	
2,4-DichlorophenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.48mg/kgLab Fort Blk. % Rec.89.00%30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.1.48mg/kgDup Lab Fort Bl MRec89.04%Lab Fort Bl Amt.0.04unitsLab Fort Bl Av. Rec89.02%Lab Fort Bl. Av. Rec89.02%Lab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blank Amt.1.67mg/kgLab Fort Blk. % Rec.95.78%Lab Fort Bl Amt.1.67mg/kgLab Fort Bl Amt.1.67mg/kg			LFB Duplicate RPD	0.23	%	0-30
Lab Fort Blk. Found 1.48 mg/kg Lab Fort Blk. % Rec. 89.00 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.48 mg/kg Dup Lab Fort Bl %Rec 89.04 % Lab Fort Bl %Rec 89.04 % Lab Fort Blank Range 0.04 units Lab Fort Bl. Av. Rec 89.02 % LFB Duplicate RPD 0.04 % 0-30 2,4-Dimethylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl Amt. 1.67 mg/kg		2,4-Dichlorophenol	Lab Fort Blank Amt.	1.67	mg/kg	
Lab Fort Blk. % Rec. 89.00 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.48 mg/kg Dup Lab Fort Bl %Rec 89.04 % Lab Fort Blank Range 0.04 units Lab Fort Bl. Av. Rec 89.02 % LFB Duplicate RPD 0.04 % 0-30 2,4-Dimethylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl Amt. 1.67 mg/kg			Lab Fort Blk. Found	1.48	mg/kg	
Dup Lab Fort BI Amt.1.67mg/kgDup Lab Fort BI. Fnd1.48mg/kgDup Lab Fort BI %Rec89.04%Lab Fort BI %Rec89.02%Lab Fort BI. Av. Rec89.02%LFB Duplicate RPD0.04%0-302,4-DimethylphenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.60mg/kg30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.Lab Fort Blk. % Rec.95.78%30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.Lab Fort Bl Amt.1.67mg/kg1.58Lab Fort Bl. Fnd1.58mg/kgDup Lab Fort Bl. Fnd			Lab Fort Blk. % Rec.	89.00	%	30-130
Dup Lab Fort Bl. Fnd1.48mg/kgDup Lab Fort Bl %Rec89.04%Lab Fort Bl %Rec89.04witsLab Fort Blank Range0.04unitsLab Fort Bl. Av. Rec89.02%LFB Duplicate RPD0.04%0-302,4-DimethylphenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.60mg/kg30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.Lab Fort Bl Amt.1.67mg/kg30-130Dup Lab Fort Bl Amt.1.67mg/kg			Dup Lab Fort BI Amt.	1.67	mg/kg	
Dup Lab Fort Bl %Rec89.04%Lab Fort Blank Range0.04unitsLab Fort Bl. Av. Rec89.02%LFB Duplicate RPD0.04%0-302,4-DimethylphenolLab Fort Blank Amt.1.67mg/kgLab Fort Blk. Found1.60mg/kg30-130Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl Amt.Lab Fort Blk. % Rec.95.78%30-130Dup Lab Fort Bl. Fnd1.58mg/kg30-130			Dup Lab Fort Bl. Fnd	1.48	mg/kg	
Lab Fort Blank Range 0.04 units Lab Fort Bl. Av. Rec 89.02 % LFB Duplicate RPD 0.04 % 0-30 2,4-Dimethylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.58 mg/kg			Dup Lab Fort BI %Rec	89.04	%	
Lab Fort Bl. Av. Rec 89.02 % LFB Duplicate RPD 0.04 % 0-30 2,4-Dimethylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.58 mg/kg			Lab Fort Blank Range	0.04	units	
LFB Duplicate RPD 0.04 % 0-30 2,4-Dimethylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.58 mg/kg			Lab Fort Bl. Av. Rec	89.02	%	
2,4-Dimethylphenol Lab Fort Blank Amt. 1.67 mg/kg Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.58 mg/kg			LFB Duplicate RPD	0.04	%	0-30
Lab Fort Blk. Found 1.60 mg/kg Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.58 mg/kg		2,4-Dimethylphenol	Lab Fort Blank Amt.	1.67	mg/kg	
Lab Fort Blk. % Rec. 95.78 % 30-130 Dup Lab Fort Bl Amt. 1.67 mg/kg Dup Lab Fort Bl. Fnd 1.58 mg/kg			Lab Fort Blk. Found	1.60	mg/kg	
Dup Lab Fort Bl Amt.1.67mg/kgDup Lab Fort Bl. Fnd1.58mg/kg			Lab Fort Blk. % Rec.	95.78	%	30-130
Dup Lab Fort Bl. Fnd 1.58 mg/kg			Dup Lab Fort BI Amt.	1.67	mg/kg	
			Dup Lab Fort Bl. Fnd	1.58	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-0	2346		Page 1	7 of 25
QC Batch Number:	GCMS/SEMI-8928					
Sample Id	Analysis	QC Analys	is	Values	Units	Limits
LFBLANK-57576						
	2,4-Dimethylphenol	Dup Lab Fo	rt BI %Rec	94.96	%	
		Lab Fort Bla	ank Range	0.82	units	
		Lab Fort Bl.	Av. Rec	95.37	%	
		LFB Duplica	ate RPD	0.86	%	0-30
	4,6-Dinitro-2-methylphenol	Lab Fort Bla	ank Amt.	1.67	mg/kg	
		Lab Fort Bl	k. Found	1.38	mg/kg	
		Lab Fort Bl	<. % Rec.	83.06	%	30-130
		Dup Lab Fo	rt Bl Amt.	1.67	mg/kg	
		Dup Lab Fo	rt Bl. Fnd	1.31	mg/kg	
		Dup Lab Fo	rt BI %Rec	78.78	%	
		Lab Fort Bla	ank Range	4.28	units	
		Lab Fort Bl.	Av. Rec	80.92	%	
		LFB Duplica	ate RPD	5.29	%	0-30
	2,4-Dinitrophenol	Lab Fort Bla	ank Amt.	1.67	mg/kg	
		Lab Fort Bl	k. Found	1.08	mg/kg	
		Lab Fort Bl	<. % Rec.	64.76	%	30-130
		Dup Lab Fo	rt Bl Amt.	1.67	mg/kg	
		Dup Lab Fo	rt Bl. Fnd	1.00	mg/kg	
		Dup Lab Fo	rt BI %Rec	60.24	%	
		Lab Fort Bla	ank Range	4.52	units	
		Lab Fort Bl.	Av. Rec	62.50	%	
		LFB Duplica	ate RPD	7.23	%	0-30
	o-cresol	Lab Fort Bla	ank Amt.	1.67	mg/kg	
		Lab Fort Bl	k. Found	1.37	mg/kg	
		Lab Fort Bl	<. % Rec.	82.30	%	30-130
		Dup Lab Fo	rt Bl Amt.	1.67	mg/kg	
		Dup Lab Fo	rt Bl. Fnd	1.34	mg/kg	
		Dup Lab Fo	rt Bl %Rec	80.58	%	
		Lab Fort Bla	ank Range	1.72	units	
		Lab Fort Bl.	Av. Rec	81.44	%	
		LFB Duplica	ate RPD	2.11	%	0-30
	m & p-cresol(s)	Lab Fort Bla	ank Amt.	1.67	mg/kg	
		Lab Fort Bl	k. Found	1.31	mg/kg	
		Lab Fort Bl	<. % Rec.	78.68	%	30-130
		Dup Lab Fo	rt BI Amt.	1.67	mg/kg	
		Dup Lab Fo	rt Bl. Fnd	1.30	mg/kg	
		Dup Lab Fo	rt Bl %Rec	78.12	%	
		Lab Fort Bla	ank Range	0.56	units	
		Lab Fort Bl.	Av. Rec	78.40	%	
		LFB Duplica	ate RPD	0.71	%	0-30
	2-Nitrophenol	Lab Fort Bla	ank Amt.	1.67	mg/kg	
		Lab Fort Bl	k. Found	1.43	mg/kg	
		Lab Fort Bl	<. % Rec.	85.74	%	30-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 1	18 of 25
QC Batch Number	: GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57576					
	2-Nitrophenol	Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.42	mg/kg	
		Dup Lab Fort BI %Rec	85.12	%	
		Lab Fort Blank Range	0.62	units	
		Lab Fort Bl. Av. Rec	85.43	%	
		LFB Duplicate RPD	0.73	%	0-30
	4-Nitrophenol	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.67	mg/kg	
		Lab Fort Blk. % Rec.	99.94	%	30-130
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.58	mg/kg	
		Dup Lab Fort BI %Rec	95.10	%	
		Lab Fort Blank Range	4.84	units	
		Lab Fort Bl. Av. Rec	97.52	%	
		LFB Duplicate RPD	4.96	%	0-50
	Phenol	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.30	mg/kg	
		Lab Fort Blk. % Rec.	77.88	%	30-130
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.26	mg/kg	
		Dup Lab Fort BI %Rec	75.62	%	
		Lab Fort Blank Range	2.26	units	
		Lab Fort Bl. Av. Rec	76.75	%	
		LFB Duplicate RPD	2.94	%	0-30
	2,4,5-Trichlorophenol	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.54	mg/kg	
		Lab Fort Blk. % Rec.	92.14	%	30-130
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.57	mg/kg	
		Dup Lab Fort BI %Rec	94.24	%	
		Lab Fort Blank Range	2.10	units	
		Lab Fort Bl. Av. Rec	93.19	%	
		LFB Duplicate RPD	2.25	%	0-30
	2,4,6-Trichlorophenol	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.58	mg/kg	
		Lab Fort Blk. % Rec.	94.64	%	30-130
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.58	mg/kg	
		Dup Lab Fort BI %Rec	94.86	%	
		Lab Fort Blank Range	0.22	units	
		Lab Fort Bl. Av. Rec	94.75	%	
		LFB Duplicate RPD	0.23	%	0-30
	Pentachlorophenol	Lab Fort Blank Amt.	1.67	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 1	19 of 25
QC Batch Number	: GCMS/SEMI-8928				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57576					
	Pentachlorophenol	Lab Fort Blk. Found	1.25	mg/kg	
		Lab Fort Blk. % Rec.	75.06	%	30-130
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort BI. Fnd	1.23	mg/kg	
		Dup Lab Fort BI %Rec	73.54	%	
		Lab Fort Blank Range	1.52	units	
		Lab Fort BI. Av. Rec	74.30	%	
		LFB Duplicate RPD	2.05	%	0-30
	Pyridine	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	0.98	mg/kg	
		Lab Fort Blk. % Rec.	58.54	%	30-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort BI. Fnd	1.09	mg/kg	
		Dup Lab Fort BI %Rec	65.40	%	
		Lab Fort Blank Range	6.86	units	
		Lab Fort Bl. Av. Rec	61.97	%	
		LFB Duplicate RPD	11.07	%	0-50
	Benzo(k)fluoranthene	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.61	mg/kg	
		Lab Fort Blk. % Rec.	96.32	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort BI. Fnd	1.54	mg/kg	
		Dup Lab Fort BI %Rec	92.66	%	
		Lab Fort Blank Range	3.66	units	
		Lab Fort BI. Av. Rec	94.49	%	
		LFB Duplicate RPD	3.87	%	0-30
	4-Nitroaniline	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.38	mg/kg	
		Lab Fort Blk. % Rec.	82.58	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort BI. Fnd	1.32	mg/kg	
		Dup Lab Fort BI %Rec	78.96	%	
		Lab Fort Blank Range	3.62	units	
		Lab Fort BI. Av. Rec	80.77	%	
		LFB Duplicate RPD	4.48	%	0-30
	Acetophenone	Lab Fort Blank Amt.	1.67	mg/kg	
		Lab Fort Blk. Found	1.20	mg/kg	
		Lab Fort Blk. % Rec.	71.84	%	40-140
		Dup Lab Fort BI Amt.	1.67	mg/kg	
		Dup Lab Fort Bl. Fnd	1.20	mg/kg	
		Dup Lab Fort BI %Rec	72.22	%	
		Lab Fort Blank Range	0.38	units	
		Lab Fort Bl. Av. Rec	72.03	%	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date: 12/11/2006		Lims Bat # : LIMT-02346		Page 20 of 25			
QC Batch Numb	er: GCMS/SEMI-8928						
Sample Id	Analysis	QC Analysis	Values	Units	Limits		
LFBLANK-57576	3						
	Acetophenone	LFB Duplicate RPD	0.53	%	0-30		
	Carbazole	Lab Fort Blank Amt.	1.67	mg/kg			
		Lab Fort Blk. Found	1.60	mg/kg			
		Lab Fort Blk. % Rec.	96.16	%	40-140		
		Dup Lab Fort BI Amt.	1.67	mg/kg			
		Dup Lab Fort Bl. Fnd	1.62	mg/kg			
		Dup Lab Fort BI %Rec	96.92	%			
		Lab Fort Blank Range	0.76	units			
		Lab Fort Bl. Av. Rec	96.54	%			
		LFB Duplicate RPD	0.79	%	0-30		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 2	21 of 25
QC Batch Numb	er: ICP-15497				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-95852					
	Silver	Blank	<0.50	mg/kg	
	Arsenic	Blank	<2.50	mg/kg	
	Barium	Blank	<0.50	mg/kg	
	Beryllium	Blank	<0.25	mg/kg	
	Cadmium	Blank	<0.25	mg/kg	
	Chromium	Blank	<0.50	mg/kg	
	Copper	Blank	0.18	mg/kg	
	Nickel	Blank	<0.50	mg/kg	
	Lead	Blank	<0.75	mg/kg	
	Antimony	Blank	<4.00	mg/kg	
	Selenium	Blank	<5.00	mg/kg	
	Thallium	Blank	<3.00	mg/kg	
	Vanadium	Blank	<5.00	mg/kg	
	Zinc	Blank	<1.00	mg/kg	
LFBLANK-57560)				
	Silver	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	97.69	mg/kg	
		Lab Fort Blk. % Rec.	97.69	%	65-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	93.42	mg/kg	
		Dup Lab Fort BI %Rec	93.42	%	65-120
		Lab Fort Blank Range	4.28	units	
		Lab Fort BI. Av. Rec	95.55	%	
		LFB Duplicate RPD	4.47	%	0-35
	Arsenic	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	107.83	mg/kg	
		Lab Fort Blk. % Rec.	107.83	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort BI. Fnd	102.54	mg/kg	00.400
		Dup Lab Fort BI %Rec	102.54	%	80-120
		Lab Fort Blank Range	5.29	units	
		Lab Fort BI. Av. Rec	105.19	%	0.05
	Deview	LFB Duplicate RPD	5.02	%	0-35
	Barium	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Bik. Found	106.21	mg/kg	00.400
		Lab Fort Bik. % Rec.	106.21	%	80-120
		Dup Lab Fort BL Amt.	100.00	mg/kg	
			102.32	mg/Kg	00.100
			102.32	%	80-120
			3.90	0/	
			104.20	70 0/	0.25
	Pondlium		3.74	70 ma/ka	0-33
	Berymun	Lab Fort Blank Amt.	100.00	тту/ку	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 2	22 of 25
QC Batch Numbe	r: ICP-15497				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57560					
	Beryllium	Lab Fort Blk. Found	101.23	mg/kg	
		Lab Fort Blk. % Rec.	101.23	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort BI. Fnd	100.42	mg/kg	
		Dup Lab Fort BI %Rec	100.42	%	80-120
		Lab Fort Blank Range	0.81	units	
		Lab Fort BI. Av. Rec	100.82	%	
		LFB Duplicate RPD	0.80	%	0-35
	Cadmium	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	103.05	mg/kg	
		Lab Fort Blk. % Rec.	103.05	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort BI. Fnd	99.05	mg/kg	
		Dup Lab Fort BI %Rec	99.05	%	80-120
		Lab Fort Blank Range	4.00	units	
		Lab Fort BI. Av. Rec	101.05	%	
		LFB Duplicate RPD	3.96	%	0-35
	Chromium	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	109.41	mg/kg	
		Lab Fort Blk. % Rec.	109.41	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	105.74	mg/kg	
		Dup Lab Fort BI %Rec	105.74	%	80-120
		Lab Fort Blank Range	3.67	units	
		Lab Fort Bl. Av. Rec	107.58	%	
		LFB Duplicate RPD	3.41	%	0-35
	Copper	Lab Fort Blank Amt.		units	
		Lab Fort Blk. Found		units	
		Lab Fort Blk. % Rec.		%	80-120
		Lab Fort Blank Range		units	
	Nickel	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	107.13	mg/kg	
		Lab Fort Blk. % Rec.	107.13	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	102.98	mg/kg	
		Dup Lab Fort BI %Rec	102.98	%	80-120
		Lab Fort Blank Range	4.14	units	
		Lab Fort Bl. Av. Rec	105.06	%	
		LFB Duplicate RPD	3.95	%	0-35
	Lead	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	103.01	mg/kg	
		Lab Fort Blk. % Rec.	103.01	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 2	23 of 25
QC Batch Numbe	r: ICP-15497				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57560					
	Lead	Dup Lab Fort Bl. Fnd	98.56	mg/kg	
		Dup Lab Fort BI %Rec	98.56	%	80-120
		Lab Fort Blank Range	4.45	units	
		Lab Fort Bl. Av. Rec	100.78	%	
		LFB Duplicate RPD	4.42	%	0-35
	Antimony	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	104.70	mg/kg	
		Lab Fort Blk. % Rec.	104.70	%	65-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort BI. Fnd	100.26	mg/kg	
		Dup Lab Fort BI %Rec	100.26	%	65-120
		Lab Fort Blank Range	4.44	units	
		Lab Fort Bl. Av. Rec	102.48	%	
		LFB Duplicate RPD	4.34	%	0-35
	Selenium	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	98.58	mg/kg	
		Lab Fort Blk. % Rec.	98.58	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	94.06	mg/kg	
		Dup Lab Fort BI %Rec	94.06	%	80-120
		Lab Fort Blank Range	4.52	units	
		Lab Fort Bl. Av. Rec	96.32	%	
		LFB Duplicate RPD	4.69	%	0-35
	Thallium	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	100.66	mg/kg	
		Lab Fort Blk. % Rec.	100.66	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	94.94	mg/kg	
		Dup Lab Fort BI %Rec	94.94	%	80-120
		Lab Fort Blank Range	5.72	units	
		Lab Fort Bl. Av. Rec	97.80	%	
		LFB Duplicate RPD	5.85	%	0-35
	Vanadium	Lab Fort Blank Amt	100.00	mg/kg	
		Lab Fort Blk. Found	106.70	mg/kg	
		Lab Fort Blk. % Rec.	106.70	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	102.52	mg/kg	
		Dup Lab Fort BI %Rec	102.52	%	80-120
		Lab Fort Blank Range	4.18	units	
		Lab Fort Bl. Av. Rec	104.61	%	
		LFB Duplicate RPD	4.00	%	0-35
	Zinc	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	104.33	mg/kg	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02346		Page 2	24 of 25
QC Batch Numbe	er: ICP-15497				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-57560)				
	Zinc	Lab Fort Blk. % Rec.	104.33	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	99.64	mg/kg	
		Dup Lab Fort BI %Rec	99.64	%	80-120
		Lab Fort Blank Range	4.69	units	
		Lab Fort Bl. Av. Rec	101.98	%	
		LFB Duplicate RPD	4.60	%	0-35
LFBLANK-57583	5				
	Copper	Lab Fort Blank Amt.	100.00	mg/kg	
		Lab Fort Blk. Found	103.39	mg/kg	
		Lab Fort Blk. % Rec.	103.39	%	80-120
		Dup Lab Fort BI Amt.	100.00	mg/kg	
		Dup Lab Fort Bl. Fnd	107.46	mg/kg	
		Dup Lab Fort BI %Rec	107.46	%	
		Lab Fort Blank Range	4.08	units	
		Lab Fort Bl. Av. Rec	105.43	%	
		LFB Duplicate RPD	3.87	%	

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332 QC SUMMARY REPORT SAMPLE QC: Sample Results with Duplicates BATCH QC: Lab fortified Blanks and Duplicates Sample Matrix Spikes and Matrix Spike Duplicates Standard Reference Materials and Duplicates Method Blanks Report Date: 12/11/2006 Lims Bat # : LIMT-02346 Page 25 of 25 QUALITY CONTROL DEFINITIONS AND ABBREVIATIONS This is the number assigned to all samples analyzed together that QC BATCH NUMBER would be subject to comparison with a particular set of Quality Control Data. LIMITS Upper and Lower Control Limits for the QC ANALYSIS Reported. All values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY REPORT. Not all QC results will have Limits defined. Amount of analyte found in a sample. Sample Amount Method Blank that has been taken though all the steps of the Blank analysis. LFBLANK Laboratory Fortified Blank (a control sample) STDADD Standard Added (a laboratory control sample) Matrix Spk Amt Added Amount of analyte spiked into a sample Amount of analyte found including amount that was spiked MS Amt Measured Matrix Spike % Rec. % Recovery of spiked amount in sample. Duplicate Value The result from the Duplicate analysis of the sample. The Relative Percent Difference between two Duplicate Analyses. Duplicate RPD Surrogate Recovery The % Recovery for non-environmental compounds (surrogates) spiked into samples to determine the performance of the analytical methods. Sur. Recovery (ELCD) Surrogate Recovery on the Electrolytic Conductivity Detector. Sur. Recovery (PID) Surrogate Recovery on the Photoionization Detector. Standard Measured Amount measured for a laboratory control sample Standard Amt Added Known value for a laboratory control sample Standard % Recovery % recovered for a laboratory control sample with a known value. Lab Fort Blank Amt Laboratory Fortified Blank Amount Added Lab Fort Blk. Found Laboratory Fortified Blank Amount Found Lab Fort Blk % Rec Laboratory Fortified Blank % Recovered Dup Lab Fort Bl Amt Duplicate Laboratory Fortified Blank Amount Added Duplicate Laboratory Fortified Blank Amount Found Dup Lab Fort Bl Fnd Duplicate Laboratory Fortified Blank % Recovery Dup Lab Fort Bl % Rec Laboratory Fortified Blank Range (Absolute value of difference Lab Fort Blank Range between recoveries for Lab Fortified Blank and Lab Fortified Blank Duplicate). Lab Fort Bl. Av. Rec. Laboratory Fortified Blank Average Recovery Duplicate Sample Amt Sample Value for Duplicate used with Matrix Spike Duplicate Matrix Spike Duplicate Amount Added (Spiked) MSD Amount Added MSD Amt Measured Matrix Spike Duplicate Amount Measured MSD % Recovery Matrix Spike Duplicate % Recovery MSD Range Absolute difference between Matrix Spike and Matrix Spike Duplicate Recoveries

	Ν	MADEP MCP AN	ALYTICAL METHO	D REPORT CERTI	FICATION I	ORM	
Lab	oratory Name: C	ON-TEST Analyti	cal Laboratory		Project #	4: LIV	nT-02346
Pro	iect Location: ØA	IE BROADWAY	CAMBRIDE	E, MA	MADEP	RTN ¹ :	
This	Form provides ce	ertifications for the 06 B	following data se	t: [list Laboratory	Sample I) Num	ber(s)]
Sam	ple Matrices:	Groundwater 🛛	Soil/Sediment	Drinking Water '	Other:	500	1
МС	CP SW-846	8260B()	8151A()	8330 ()	6010B	()	7470A/1A()
Me	thods Used	8270C 😡	8081A()	VPH()	6020	()	9014M ² ()
As sp	ecified in MADEP	8082 🚫	8021B()	EPH()	7000 S ³	()	7196A()
Analy (chec	tical Methods. k all that apply)	1 List Release Tra 2 M – SW-846 Me 3 S – SW-846 Met	cking Number (RTN thod 9014 or MADE hods 7000 Series	N), if known P Physiologically / List individual meti	Available Cy hod and and	yanide alyte.	(PAC) Method
An a	affirmative respo	onse to question	s A, B, C and D is	s required for "F	Presumpti	ve Cel	rtainty" status
А	Were all sample that described c	es received by th on the Chain-of-Cu	e laboratory in a istody documenta	condition consis tion for the data s	tent with set?	¥Ч	es 🗆 No ¹
В	Were all QA/QC included in this discuss in a na standards or gui	C procedures requ s report followed rrative QC data tl idelines?	uired for the spec , including the n hat did not meet	ified analytical m equirement to n appropriate perfe	ethod(s) ote and ormance	Ø	Yes □ No ¹
C.	Does the data ir for "Presumptive (d) of the MADE Control Guidelin	ncluded in this rep e Certainty", as de P document CAM es for the Acquisit	oort meet all the a escribed in Sectio / VII A, "Quality A tion and Reporting	nalytical requiren in 2.0 (a), (b), (c Assurance and Q g of Analytical Da	nents) and uality ta"?	" ح	Yes □ No ¹
D	VPH and EPH I without significal	<i>lethods only</i> : Want modifications (s	as the VPH or EP ee Section 11.3 o	H Method conduc f respective Meth	cted iods)		Yes □ No ¹
	A response to qu	uestions E and F	below is require	d for "Presump	tive Certa	inty" s	status
E	Were all analytic the specified me	al QC performand thods achieved?	ce standards and	recommendation	is for	□ \	′es,-⊟∕No¹
F	Were results for method(s) report	r all analyte-list c ed?	compounds/eleme	nts for the spec	cified	γ⊗γ	es □ No ¹
¹ All	Negative respon	ses must be addre	essed in an attach	ed Environmenta	l Laborato	ry cas	e narrative.
l, the i inquir analyt	undersigned, att y of those res _l ical report is, to	est under the pa ponsible for ob the best of my k	ins and penalties taining the info nowledge and be	s of perjury that, rmation, the m elief, accurate a	based up aterial co nd comple	oon m Intaini ete.	y personal ed in this
Signa	iture: Ed	ward Den	son	Position: Tech	nical Dire	ector	
Printe	ed Name: Edwa	rd Denson		Date: 12/	11/06		

AIHA	
NELAC	
& WE	
IE/DBE	
Cert	

OMPLETELY OR IS		S FORM IS NOT FILLE	CHAIN. IF THI	TONS ON YOUF	RY OUR CLIEN	- UNLESS THEF	E RECEIPT	AFTER SAMPL	THE DAY START U	ARTS AT 9:00 A.M. ND TIME WILL NOT	ROUND TIME ST	TURNA
	0 = Other	0 = other				re lab approva	Pol Requi	0:20 90-01-	12 .	CHOLER	V multiple	
m bisulfate	B = Sodiu	SL = sludge	TACC			Hr ⊡ *4-Day	-72-I	Time:	Date/	FROM	by: (signature)	Received
ric Acid	S = Sulfu	$\mathbf{s} = \text{soil/solid}$	D.E.per	ements or DL's:	Special Require	דע, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	10 × 24-1	9-6 XX:	12-	GOOLYK	T.Cart	1Urzan
Acid	N = Nitric	A = air	N. Srrun	1230-0680	30 10 12 (2)	* HSUN		Time:	Date/	Cr Cr	ed by: (signature	Relinguish
anol	M = Meth	DW= drinking water	ND AN 35	nent Project/RCI	Data Enhancen	Other	D D	1.8 9-5	61			V V V
T = Na thiosulfate	H = HCL	WW= wastewater	Ð			10-Day		Time:	Date/	0	by: (signaturs) 🤇	Received
X = Na hydroxide	I ⇒ Iced	GW= groundwater			Regulations?	7-Day		11:8 201	6121	Herry)	2111 111 A	ND W
ation Codes:	**Preserv	*Matrix Code:	ements	Limit Require	Detection I	naround **	Turi	Time:	Date/		hed by: (signature)	Relinquist
	n	c - Clean; U - Unknow)dium; L - Low; V	H - Hígh; M - Me	OqDec SPM)at Mc Elimiy	2ased to [24-MG, rela	ed on he	08 Dec 2006, Star	at SPM ON	WULS N
ample may 1000	a specific s	x/Conc. Code Box:	intration in Matri	be high in conce	WATTEN OF	+ by Dan 4	theiraut	cted from	as colle	NFFloor Ow" W	Sample"Vau	Note
HAIM WITH	41.166	A NEVER A	n per due								Comments:	Laboratory
Not CALL DOT	yze-D	Sumple to anyly	usufficient	(A) I			00/01/2	S JU Cont	VICTO	hommen ha		80 A - S
			**************************************			**************************************		- m		C mileuros		
S & vo the								10000				
RUNDIL		<u>ل</u> ر 				X121 W	12/8~0	92		ろし	TANT 101	
		× × ×			<	PM 600	5-50	9	UW, pe	VC - Worthwa	SthRull	4S S
Values Concord		XXX			<	PM 6:15	610	90	W. Pro	Stair well	Salver	23
compled		XXX			<	11 6:25	620	5 b 8	PEJ)	- FUR NE (WI	ARDUCT	7
<u>Comments</u>			$\frac{1}{2}$		<	10/2/110	0 2.30	121 2840	40	12 Jours AD	Vault So	2
Street and		RC PC ST	MGPI	*Matrix Conc. Code Code	Comp- osite Grab	me Date/Time	Start Date/Tir	# 063	Lab	cription	Sample Desc	Field ID
1, 21 12 13 6 ⊈other		VAC	PC SVI Ne			e Sampled	Date	ves 🗖 no		proposal date	S	J ye
15 July T=tedlar bag	9	S S M	Be IC tal		l	D OTHER	13	• Form Required	State	r Billing purposes)	Provided? (For	Proposal
AC S=summa can		S N - DÆ	s s ls,k	C GIS KEY			Format:					
Vite Ve Viel		m	(zzt		5661-54	51-326	Email:	/		h MCGa	By: Dorth	Sampled
M P=plastic	~	IPE I	501 (() ()				Fax # :	2 abor	y and	Breadway. (ocation: Un	Project L
, W d=glass	15	E A	H (heck one):	DELIVERY (c				III CALIN	1001 1	Attention
, Aamber glass	-	<u>}</u>	ک ۱						Vr V	MUTIAN	+	
-Cont. Code:	IESTED	ANALYSIS REQU)))			PO #	Client I			NON.	1 × 1	
~Cont.Code		666	000		1111-20	t# 4240	Project	****		Johnst	116	Address:
**Preservation	<u>k</u>	K WIL WILL W	NOW-NW NO		56 765	nue% (%) (Teleph	2	Virra "	NO GUNIA	y Name: 🧃 🕅	Compan
# of containers			1 / 1		1.0 4	1 2 4 C	m	.contestlabs.cc	www	Dr it	and the second se	
128	N, MA 010	H CONGMEADOV	ImT# 023	1 (546)	7-628/24	() # 100)	tlabs.com	413-525-6405 II: info@contes	Fax:	CAL LABORATORY	ANALYTI	ŧ
Page of	FLOOR	39 SPRUCE ST, 2ND	NRD	DDY RECC	OF CUST	CHAIN	N	ne: 413-525-233	® Phor	N N	5	

			9 Sprace	ST4-CCT	
con-test	M.W.W.C.	DITESTIND STOLL	East Long - Phone: 1=<	ncad/0W_M/A_ M-3_525-2332	
HITTHE ANALYTICAL LABORATORY SAI	MPLE REC	CEIPT CHECKLIST	bac = 241 - 3	525-6405	
	Envio	noneta 0			
CLIENTNAME: RC	EINCI	United for	1.1.		
RECEIVED BY:/	TEVSE	DATE: 12	1006		
	. J d	NO VES NO)		
]. Was chain of custody reimquist	ieo anu sigu		,		
2. Does Chain agree with samples	?	YES NO)		
If not, explain:					
3. All Samples in good condition?		YES NO	}	;	
If not, explain:					
4. Were samples received in comp Temperature 6-6 degrees C?	liance with	NES NO	Degr H.9	ees: *C	
5. Are all soil uph & voc samples (covered with	preservation? TES NO	N/A		
r. Are there any on hold samples?		YES <u>NO</u>	\rightarrow		
7. Laboratory analysts notified? Who <u>Ryph Shumpte/BL/5</u>	B_Time_05	VES NO B15 Am Date 12/10/06	Y		
S. Location where samples are stor	<u> ೮೦</u> ಷ	CONTAINERS SENT TO CON-	TEST	# of	
CONTAINERS SENT IN TO CON-TEST	ig containers	Air Cassettes	<u>期</u> 度 131 人名 		
1 liter amber		8 oz ciear jar			
500 ml amber		4 oz clear jar	- 4450 87,97 11,08 17,05 11		
250 mlamber (8oz. Amber)		2 oz clear jar	92. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 liter plastic		Plastic bag			
500 ml plastic		Encore	200 13.5 200 200		
250 ml plastic		Brass Sleeves	27 27 27		
40 ml vial		Tubes			
Colisure bottle	4 9 9 9	Summa cans	12/10/01		
Dissolved oxygen bottle		Other	<u>A</u>	4 clear 9	455
Flashpoint bottle	5 ?		<u> </u>	jars	
limited water/oil sample;	52, 53, 5	Have cotton swabs ; SI - Limited samples	is a s		
all the samples have the correct pH le	evels?	YES NO If no, please expla	in below:	RUN	ł
1				PCB as	highes
				priority	> then
				- Shacis	then

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #:	LIMT-02359	
JOB NUMBER:	42462-1111	

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: ONE BROADWAY, CAMBRIDGE, MA

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST
S1	06B40546	SOLID	VAULT SOOT SAMPLE 1	hg (mg/kg)

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-02359 JOB NUMBER: 42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

Comments :

LIMS BATCH NO. : LIMT-02359

CASE NARRATIVE SUMMARY

THERE ARE NO ANALYTICAL ISSUES AFFECTING THE USABILITY OF THE DATA

DETAILED CASE NARRATIVE

METHOD SW846-7471A

RECOMMENDED SAMPLE HOLDING TIMES WERE NOT EXCEEDED FOR ALL SAMPLES ANALYZED BY METHOD 7471A UNLESS LISTED BELOW: NONE EXCEEDED

ALL SAMPLES FOR METHOD 7471A WERE RECEIVED PRESERVED PROPERLY IN THE PROPER CONTAINERS AS SPECIFIED ON THE CHAIN-OF-CUSTODY FORM UNLESS LISTED BELOW: ALL PROPERLY PRESERVED

INITIAL AND CONTINUING CALIBRATIONS MET ALL REQUIRED PERFORMANCE STANDARDS FOR METHOD 7471A EXCEPT AS LISTED BELOW: ALL STANDARDS MET

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RECOVERIES. AS WELL AS LCS RPD, FOR REQUIRED MCP DATA ENHANCEMENT MERCURY 7471A WERE ALL WITHIN REQUIRED CONTROL LIMITS EXCEPT AS LISTED BELOW: NONE OUTSIDE CONTROL LIMITS

THE 7471A METHOD BLANK WAS FOUND NOT TO BE CONTAMINATED AT LEVELS ABOVE THE REPORTING LIMIT EXCEPT WHERE LISTED BELOW: NO CONTAMINATION NOTED

ALL 7471A MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERIES, SAMPLE DUPLICATE RPDs AND MSDRPD, IF REQUESTED IN THIS BATCH WERE WITHIN CONTROL LIMITS SPECIFIED BY THE METHOD UNLESS LISTED BELOW: NONE REQUESTED OR PERFORMED ON SAMPLES SPECIFIC TO THIS CHAIN-OF-CUSTODY.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations :

AIHA 100033 MASSACHUSETTS MA0100 CONNECTICUT PH-0567 NEW YORK ELAP/NELAP 10899 AIHA ELLAP (LEAD) 100033 **NEW HAMPSHIRE NELAP 2516** VERMONT DOH (LEAD) No. LL015036 RHODE ISLAND (LIC. No. 112)

NEW JERSEY NELAP NJ MA007 (AIR)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

lward Denson 12/11/06 Tod Kopyscinski Director of Operations

Sondra L. Slesinski Quality Assurance Officer

SIGNATURE

REPORT DATE 12/11/2006

TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 ATTN: DOT MCGLINCY

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 42462-1111

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-02359 JOB NUMBER: 42462-1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

Edward Denson Technical Director

* See end of data tabulation for notes and comments pertaining to this sample

DOT MCGLINCY									
TRC SOLUTIONS	- LOWELL						1	2/11/200	06
BOOTT MILLS SO	UTH, FOOT OF JO	OHN ST.					Р	age 1 o	f 2
LOWELL, MA 018	52	Ρι	urchase Order N	0.:		Pr	oject Numb	er: 4246	2-1111
Project Location: Date Received: Field Sample # :	ONE BROADWAY 12/9/2006 S1	Y, CAMBRIDGE, M	A			LII Jo	MS-BAT #: bb Number:	LIMT- 42462	02359 2-1111
Sample ID :	06B40546	Sampled VAULT S	: 12/9/2006 SOOT SAMPLE	1					
Sample Matrix:	SOLID								
		Units	Results	Date Analyzed	Analyst	RL	SPEC Lin	nit Hi	P/ F
Mercury		mg/kg	0.167	12/11/06	SY	0.009			

Analytical Method:

SW846 3050/7471

SAMPLES ARE DIGESTED WITH ACIDS AND THEN ANALYZED BY

COLD VAPOR (FLAMELESS) ATOMIC ABSORPTION SPECTROPHOTOMETRY

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

DOT MCGLINCY TRC SOLUTIONS - LOWELL BOOTT MILLS SOUTH, FOOT OF JOHN ST. LOWELL, MA 01852 Purchase Order No.: Project Location: ONE BROADWAY, CAMBRIDGE, MA Date Received: 12/9/2006

12/11/2006 Page 2 of 2

Project Number: 42462-1111 LIMS-BAT #: LIMT-02359 Job Number: 42462-1111

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates Standard Reference Materials and Duplicates

Report Date:	12/11/2006	Lims Bat # : LIMT-02359		Page 1	of 2
QC Batch Numb	oer: HG-7281				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-95915					
	Mercury	Blank	<0.010	mg/kg	
LFBLANK-5760	6				
	Mercury	Lab Fort Blank Amt.	0.500	mg/kg	
		Lab Fort Blk. Found	0.450	mg/kg	
		Lab Fort Blk. % Rec.	90.000	%	80-120
		Dup Lab Fort BI Amt.	0.500	mg/kg	
		Dup Lab Fort Bl. Fnd	0.452	mg/kg	
		Dup Lab Fort BI %Rec	90.500	%	
		Lab Fort Blank Range	0.500	units	
		Lab Fort Bl. Av. Rec	90.250	%	
		LFB Duplicate RPD	0.554	%	

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332 QC SUMMARY REPORT SAMPLE QC: Sample Results with Duplicates BATCH QC: Lab fortified Blanks and Duplicates Sample Matrix Spikes and Matrix Spike Duplicates Standard Reference Materials and Duplicates Method Blanks Report Date: 12/11/2006 Lims Bat # : LIMT-02359 Page 2 of 2 QUALITY CONTROL DEFINITIONS AND ABBREVIATIONS This is the number assigned to all samples analyzed together that QC BATCH NUMBER would be subject to comparison with a particular set of Quality Control Data. LIMITS Upper and Lower Control Limits for the QC ANALYSIS Reported. All values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY REPORT. Not all QC results will have Limits defined. Amount of analyte found in a sample. Sample Amount Method Blank that has been taken though all the steps of the Blank analysis. LFBLANK Laboratory Fortified Blank (a control sample) STDADD Standard Added (a laboratory control sample) Matrix Spk Amt Added Amount of analyte spiked into a sample Amount of analyte found including amount that was spiked MS Amt Measured Matrix Spike % Rec. % Recovery of spiked amount in sample. Duplicate Value The result from the Duplicate analysis of the sample. The Relative Percent Difference between two Duplicate Analyses. Duplicate RPD Surrogate Recovery The % Recovery for non-environmental compounds (surrogates) spiked into samples to determine the performance of the analytical methods. Sur. Recovery (ELCD) Surrogate Recovery on the Electrolytic Conductivity Detector. Sur. Recovery (PID) Surrogate Recovery on the Photoionization Detector. Standard Measured Amount measured for a laboratory control sample Standard Amt Added Known value for a laboratory control sample Standard % Recovery % recovered for a laboratory control sample with a known value. Lab Fort Blank Amt Laboratory Fortified Blank Amount Added Lab Fort Blk. Found Laboratory Fortified Blank Amount Found Lab Fort Blk % Rec Laboratory Fortified Blank % Recovered Dup Lab Fort Bl Amt Duplicate Laboratory Fortified Blank Amount Added Duplicate Laboratory Fortified Blank Amount Found Dup Lab Fort Bl Fnd Duplicate Laboratory Fortified Blank % Recovery Dup Lab Fort Bl % Rec Laboratory Fortified Blank Range (Absolute value of difference Lab Fort Blank Range between recoveries for Lab Fortified Blank and Lab Fortified Blank Duplicate). Lab Fort Bl. Av. Rec. Laboratory Fortified Blank Average Recovery Duplicate Sample Amt Sample Value for Duplicate used with Matrix Spike Duplicate Matrix Spike Duplicate Amount Added (Spiked) MSD Amount Added MSD Amt Measured Matrix Spike Duplicate Amount Measured MSD % Recovery Matrix Spike Duplicate % Recovery MSD Range Absolute difference between Matrix Spike and Matrix Spike Duplicate Recoveries

	Ν		IALYTICAL METHOE	REPORT CERTI	FICATION F	ORM	
Lab	oratory Name: CO	ON-TEST Analyt	ical Laboratory		Project #	#: LIM	T-
Proj	ect Location: ON	TE BROADWA	Y, CAMBRID	GE MA-	MADEP F	RTN ¹ :	
This	Form provides ce	ertifications for the 068 子の	e following data set 546.	t: [list Laboratory	Sample IE) Num	ber(s)]
Sam	ple Matrices:	Groundwater 🌶	Soil/Sediment	Drinking Water	□ Other: _		
мс	CP SW-846	8260B()	8151A()	8330 ()	6010B	()	7470A/1A 🐋)
Me	thods Used	8270C()	8081A()	VPH()	6020	()	9014M ² ()
As sp	ecified in MADEP	8082()	8021B()	EPH()	7000 S ³	()	7196A()
Comp Analy (chec	tical Methods. k all that apply)	1 List Release Tra 2 M – SW-846 Me 3 S – SW-846 Me	acking Number (RTN ethod 9014 or MADE ethods 7000 Series	l), if known P Physiologically List individual met	Available Cy hod and ana	yanide alyte.	(PAC) Method
An a	affirmative respo	onse to question	as A, B, C and D is	s required for "l	Presumpti	ve Cei	tainty" status
А	Were all sampl that described of	es received by th on the Chain-of-C	ne laboratory in a ustody documenta	condition consis tion for the data	tent with set?	×Υ	es 🗆 No ^{1 ′}
в	Were all QA/Q0 included in this discuss in a na standards or gu	C procedures req s report followed rrative QC data idelines?	uired for the speci d, including the ro that did not meet	ified analytical m equirement to r appropriate perf	nethod(s) note and formance	Ķ	Yes □ No ¹
C	Does the data in for "Presumptive (d) of the MADE Control Guidelin	ncluded in this re e Certainty", as c EP document CA nes for the Acquis	port meet all the a lescribed in Sectio M VII A, "Quality A ition and Reporting	nalytical requiren n 2.0 (a), (b), (c Assurance and C g of Analytical Da	ments c) and Quality ata"?	×.	Yes □ No ¹
D	VPH and EPH I without significa	<u>Methods only</u> : W nt modifications (/as the VPH or EP see Section 11.3 o	H Method condu f respective Metl	cted hods)		Yes 🛛 No ¹
	A response to q	uestions E and I	⁼ below is require	d for "Presump	tive Certa	inty" s	status
E	Were all analytic the specified me	cal QC performar ethods achieved?	nce standards and	recommendation	ns for	X \	∕es □ No ¹
F	Were results fo method(s) repor	r all analyte-list ted?	compounds/eleme	ents for the spe	cified	⊠ Y	es □ No ¹
¹ All	Negative respon	ises must be addi	ressed in an attach	ed Environmenta	al Laborato	ry cas	e narrative.
l, the inquii analy	undersigned, at ry of those res tical report is, to	test under the pa ponsible for ol the best of my	ains and penalties btaining the info knowledge and be	s of perjury that rmation, the n elief, accurate a	t, based up naterial co nd comple	oon m ontain ete.	y personal ed in this
Sign	ature:	Edward D	enson	Position: Tec	hnical Dire	ector	
Print	ed Name: Edwa	ard Denson		Date:	11/06		

"TURNAROUND TIME STARTS	Preceived by: (signature) FR.on	1000 1 4 4 COC	Trainiguisticulus use (significance)	Helinguished by: (signature)	Received by: (signaturs)	Heinquissed by: (signature) All With M. M.S.S.Cux Received by: (signature) Helinguished by: (signature)	N STAR at SPM UN 08 De Relinquistad by: (signature) No Titley N. M. Slav Received by: (signature) Relinguistad by: (signature)	Helinguished by: (signature)	Laboratory Comments: Note: Schupte Vault File Note: Schupte Vault File Note: Schupte Vault File No TAR at 51M un 08 De Helinquished by: (signature) Helinguished by: (signature) Helinguished by: (signature)	Helinguished by: (signature)	Helinguished by: (signature) Helinguished by: (signature) Helinguished by: (signature)	Vauit Vauit Valid OIL + WATCC Aboratory Comments: Note: Scimple: Vault Fil Note: Scimple: Vault Fil Helinguished by: (Signature)	S4 Sth GLOR - Vouit Vouit Vouit Vouit Vouit Vouit Vouit Vouit Note: Scimple: Vault Note: Scimple: Vault Note: Scimple: Vault Filinguistad by: (signature) Recipiced by: (signature) Helinguistad by: (signature) Helinguistad by: (signature)	S3 Style - St S4 St GLOR - St Valit 01/2+WATCR Valit 01/2+WATCR Valit Scimple: Vault Fil Note: Scimple: Vault Fil	SZ ARDUCT-FLR SZ ARDUCT-FLR SZ SCHYLOR-St SZ SCHYLOR-St Voult OIL+WATCC Voult OIL+WATCC Voult SCHWICK Note: Schwile: Vault Fl Note: Schwile: Vault Fl	SI VAULT SAATS	Field ID Sample Description	Field ID Sample Description SI Voult Sat Sat SZ ALEDUCT-FLP SZ ALEDUCT-FLP SZ SALFDUCT-FLP SZ SALFDUCT-FLP SZ SALFDUCT-FLP SZ SALFDUCT-FLP SZ SALFDUCT-FLP Note: SAMple: VAUT-FL Note: SAMple: VAUT-FL	Proposal Provided? (For Billing Proposal Provided? (For Billing Prop Field ID Sample Description S. I. V.M.H. Stoft S. S. Z. A.R. DUCT - FLP S. Z. A.R. DUCT - FLP Note: Scample - Vault - FL Note: Scample - Vault - FLP Note: Scample - Vault - FLP	Sampled By: Diretty y Proposal Provided? (For Billing Field ID Sample Description SI Voult Sat S SZ ARDUCT-FLP SZ ARDUCT-FLP SZ SCHFLORC- Vault OIL + WATER Vault MIL + WATER Vault MIL + WATER Note: Scimple: Vault Fil Note: Scimple: Scimple: Vault Fil Note: Scimple: Vault Fil Note: Scimple: Scimple: Vault Fil Note: Scimple: Scimple: Vault Fil Note: Scimple: Scimple: Vault Fil Note: Scimple: Scimp	Project Location: Une Sizza Sampled By: Direct Location: Une Sizza Proposal Provided? (For Billing Field ID Sample Description St Vhult Satt SZ ARDUCT FLE SZ ARDUCT FLE SZ SCHFLQE - St SZ SCHFLQE - St SZ SCHFLQE - St SZ SCHFLQE - St Note: Schfle: Vault FL Note: Schfle: Vault FL	Attention: Dat MC	Attention: Dut MCU Project Location: Dut MCU Sampled By: Dut Act Proposal Provided? (For Billing Proposal Provided? (For Billing S Z Provided? (For Bulling S Z Provided? (For Bulling) S Z Provided (For Bulling) S Z Pro	Address: 1/6 Ju Attention: Dat MC Project Location: Dat MC Sampled By: Drattly V Proposal Provided? (For Billing Proposal Provided? (For Billing Si Voult Description Si Voult Sample Description Si Voult Strature Schrouch - FLP Si Si Voult Sat Sch Si Sch Gube - St Si Sch Gube - St Note; Sch Min OB De Helinquisted by: (signature Note: Sch Sch Sch Note: Sch Sch Note: Sch Sch Sch Note: Sch Sch Sch Note: Sch Not	Company Name: INC Address: III Attention: Dat MCI Project Location: Dat MCI Sampled By: Dat MCI Proposal Provided? (For Billing prop Field ID Sample Description SI Null Sample Description SI Support Comments: Note: Scimple: Value - St Note: Scignature Note:	Company Name: TRC (Address: 1/10 Ju Attention: DuT MC Sampled By: Du T MC Proposal Provided? (For Billing yes prop Field ID Sample Description S I Null Suff Suff Suff Suff Suff Suff Suff S	Company Name: TRC (Address: 1/2 Ju Address: 1/2 Ju Project Location: Une Billing Sampled By: Drothy Proposal Provided? (For Billing Field ID Sample Description St Vhult Stotty Proposal S Z Arc DuCT - FLP S Z Arc DuCT - FLP S Z Arc DuCT - FLP S Z Sch CLOR - St S Z Sch CLOR - St S Z Sch CLOR - St S Z Sch CLOR - St Note: Sch N OR DP Relinquistned by: (signature) Heilinguistned by: (signature)
	(signature) FROM	Thus Goolak	O Manufullion for	by: (signature)	(signaturfs)	101: (Signature)	k SPM (in 09 Dec 2016, Stole) by:(signature) (signature) (signature)	Chample Wautt Flow Ow" was Chample Wautt Flow Ow" was 2 SPM ON 08 Dec 2016, Stored by (signature) (signature) (signature) (signature)	Manuerus: ample: Vavit Flow Ow" was L SPM ON OBDer 2016, Store by: (signature) (signature) (signature) (signature) (signature)	Malinia by The Werth	Callected by The by The Werth omments: cumple: Vavit Floor Ow' was t SPM ON OBDER 2016, State t SPM ON OBDER 2016, State	ML+WATER Callected by Dun Wart omments: cumple: Vavit Flow OW' wa cumple: Vavit Flow OW' wa	Sth FLOOR - WorthWall ML+WATER CartleGted Comments:	StayFille - Stair well(1) StayFille - Stair well(1) Staffille - Worthwall M_+WATER M_+WATER by North - Iow ow " war comments: Comments:	Are DUCT - FLE/NE (JP Staffille - Stair well(1/2 Staffille - Stair well(1/2 Staffille - Northwall M_+WATER by The Catherfed by Mon 08 Dec 2016, States & SPM on 08 Dec 2016, States & SPM on 08 Dec 2016, States	Noult Sort Spice le 1 Are DUCT - FLR NE (WP Staffalle - Stair well(1/2 Staffalle - Stair well(1/2 Staffalle - Stair well(1/2 Staffalle - Stair well(1/2 Callected by North Ob Nerrow watch isignature) (signature) (signature) (signature)	ample Description Vault Sat Say le 1 Are DUCT-FLR NE (JP Styfedre - Stair well(1/2 Styfedre - Styfedre - Styfed	noposal date ample Description Vhult Sadt Shup le 1 Are DUCT - FLR NE (JP) Sch FLOR - Worth Wall Sch FLOR - Worth Wall Sch FLOR - Worth Wall Sch FLOR - Worth Walt Calle Cited Sch FLOR - Worth Walt Calle Cited Sch FLOR OW ' wa comments:	vided? (For Billing purposes) proposal date proposal date proposal date proposal date proposal date proposal date proposal date provided? (For Billing purposes) provided? (For Billing purposes) provid	1. Diretty MCGT-i proposal date proposal date imple Description Mult Sat Shir well Mult Sat Shir well Style - Shir well Style - Shir well Mult Walt Flow OW' wa comments in anyle Wart Flow OW' wa comments in anyle Wart Flow OW' wa comments in anyle Wart Flow OW' wa comments	ation: Une Braddway (2) ovided? (For Billing purposes) proposal date iample Description Null Sat Sing le 1 Are DUCT-FLANE (UP Are DUCT-FLANE (UP Sth GLORE - Worth Wall Sth GLORE - State Sth Sth Sth State Sth Sth Sth State Sth Sth Sth State Sth Sth Sth Sth Sth State Sth Sth Sth Sth Sth Sth Sth Sth Sth Sth	ation: Une Breachary (2 ation: Une Breachary (2 "Direthy MCG-LINC" "Direthy MCG-Linc" proposal date "ample Description Noult Soft Shap le 1 Noult Soft Shap le 1 Noult Soft Shap le 1 Noult Soft Shap le 1 Staffalle - Skir well (1) Staffalle - Skir well (1	ation: Une Billing purposes provided? (For Billing purposes) "Direthy MCG-LCA "Direthy MCG-LCA "Direthy MCG-LCA "ample Description Vall+ Sadt Shap let Star Walt Star well(L Star Walt Star well(L) Star Walt Star well(L) Star Star well(L) Star Walt Star well(L) Star Star Werch(L) Star Star Star Star Star Star Star Star	1/10 JUNING	Iame: INCENTRALING I le JUhn St Dat MCG-LING Dat MCG-LING Dat MCG-LING "Dathy MCG-LING "Dathy MCG-LING proposal date proposal date imple Description Nault Sadt Same I e I Nault Sadt Same I e I Nault Sadt Same I e I Say Lang - Skir well Say Lang - Skir well ML + WATER Callected by Signature (signature) (signature) I by (signature)	Iame: TRC ETV(1000000000000000000000000000000000000	ame: TRC Environ I le JUN Envent ation: Une Breadway Dot MCGLING Dot MCGLING Dot MCGLING Dot MCGLING proposal date proposal date proposal date proposal date StarfLOR - Skir well(L) StarfLOR - Skir well(L) Sta
ture) FROM		Jun 1000 fr	The second se	Y	C S Chu	manuel Moschic	M ON OB Der 2016, Stored, mature MSSCurc)	e"Vault Floor Ow" was M ON OBDer 2016, Stored manuel McClurcy	Hinlob Mercury a: Wavit Flow Ow" was e"Wavit Flow Ow" was "M on 08 Dec 2016, stored provedury Photos Chry	hintol Mercury Hintol Mercury envault Flow ow" was envault Flow ow" was mon 08 Dec 2016, stored pranner p	Crathecites by Dun Warton Hulob Mercury envarit Floor ow" was envarit	WATTER Crattercites by Dun Worton by Dun Worton mis envarite Nerrow" was envarite Floor ow" was envarite Floor ow" was envarite Floor ow" was envarite Floor ow" was envarited	FLOOR - Worthwall	ZOR-Stair well(W FLOOR-Worthwall) WATER Criticites Criticites by Dun Warton by Dun Warton with the Nercury with the Nercury	DUCT-FLE/NE(WPE EDE-Stair well(W ELOOR - Worthwall) WATER WATER WAUTE Floor OW" was e"Vaute Floor OW" was e"Vaute Floor OW" was e"Vaute Floor OW" was e"Vaute Floor OW" was	H Sad Ship let V DUCT-FLE/NE(WPS COR-FLE/NE(WPS COR-Stair well(W GLOOR-Worthwall) GLOOR-Worthwall GLOOR-Worthwall MATTER MON 08 DEC2006, Stoled Manuel Manuel Manuel Manuel Manuel	= Description + Stat Ship let V DUCT-FLE/NE(WPE 2012-Stair well(W 2012-Stair well(W 2012-Stair well(W 2012-Stair well(W 2014-Stair well(W	Proposal date Proposal date Power-FLE/NE(NPE 202-Stair well(N 202-Stair well(N	Proposal date proposal date <u>proposal date</u> <u>Proposal </u>	eretter MCGte-s proposal date proposal date proposal date proposal date proposal date proposal date proposal date servarite FLE/NE(L)PE Callected COOR - Rever Ne(L)PE COOR - Rever Ne(L)PE Prove Ne Court Prove Ne Court P	entry MCGLing Ch eventry MCGLing Proposal date Proposal date Description 4 Stat Ship le 1 V OUCT-FLE/NE(WPE COR-Stair Well(W GOR-Stair Well(W GOR-Stair Well(W GOR-Stair Well(W GOR-Stair Well(W GOR-Stair Well(W GOR-Stair Well(W GOR-Stair Well(W GOR-State Well(W GOR-State Well(W GOR-State Well) GOR-State Well(W GOR-State Well) GOR-State Well(W GOR-State Well) GOR-State Well(W GOR-State Well) GOR-State Well(W GOR-State Well) GOR-State Well(W GOR-State Well) GOR-State Well) GOR-State Well(W GOR-State Well) GOR-State Well) GOR-State Well) GOR-State Well) GOR-State Well GOR-State Well) GOR-State Well GOR-State Well	17 MCG-LINCY 217 (For Billing purposes) 17 (For Billing purpose) 17 (For Bill	Lawell Lawell IT MCGLINCY IT MCGLINCY Proposal date Proposal	Lawell Lawell Lawell Dire Breachier (2) it McG-LINCY it For Billing purposes) Proposal date proposal date proposal date proposal date proposal date proposal date proposal date cather Nech-Line COR - FLE NE (JIPE COR - Korth Wall COR - Korth Wall Cortect - Korth Wall Wall - Flow Ow' was e Wall Flow Ow' was e Wall Flow Ow' was	116 John Ster Lawell Lawell The John Standary Che Breadary (2) Pro Billing purposes) Pro Billing purposes) Pro Billing purposes) Processi Mc Che Lawell Mc Che Calle Star well w Calle Star Warter Star ow was envault Floor ow was envault Floor ow was	TRC ETWING Lawell Lawell Lawell TMCG-LINCY TMCG-LINCY Proposal date Proposal date Proposal date Proposal date PRE-Stair well(WPE COR - Stair well) COR - Stair well COR - Stair well	HILD JULING TRC ENVIRONNE Lawell Lawell Lawell Lawell III JULING IT MCG-LING Proposal date Proposal da
m Date/T	JOLAK 10-		2.61	54 In 1999	Date/T		122 2016, Stoled on ice 2 Date/TI IZ/9/ Date/TI	-low Ow" was collect <u>lec 2006, Stated onice 2</u> <u>lec 2006, Stated onice 2</u> <u>lec 2006</u> , <u>stated onice 2</u> <u>lec 2006</u> , <u>stated onice 2</u>	Nerconny ddd zbor ow' was cotter <u>rec 2016, stored onice 2</u> <u>rec 2016, stored onice 2</u> <u>rec 2016, stored onice 2</u> <u>rec 2016, stored onice 2</u>	Marcing didd Marcing didd The Own was collect re 2016, stated onlie 2 re 2016, stated onlie 2 reg 12/9/	Callecides an Dun Worlton XNS an Warchard and NS Narchard as collect low ow was collect her 2016, stated onlie 2 her 2016, stated onlie 2 her 2016, stated onlie 2 her 2016, stated onlie 2 her 2016, stated onlie 2	Callecifes a) Thin Walton VIS a) Thin Walton VIS a) The own was collect The 2006, Stated onlie 2 Dated onlie 2 12/9/ 12/9/	Marchhuldellipe	Hair well (What)	Phir well(W.PES) - thir well(W.PES) - Northwall(W.PE) - an undertainty well an undertainty well her ow' was context responses to the total on tot	Phir well (W.PES) thir well (W.PES) thir well (W.PES) an united (W.	ion Lab #	non Lab # ion Lab # in L	ng purposes) State F oposal date ye ion Lab # PLNE (WIPES) - PLNE (WIPES)	1/14 CG-16-is ng purposes) State F poposal date I ye ion Lab # PLNE (WRES) - PLNE (WRES) -	ng purposes) state F ng purposes) state F ion Lab # inn Lab # inn Lab # inn Lab # inn Lab # inn Lab # inn Well(W.pe) inn NS inn Well(W.pe) inn NS inn Well(W.pe) inn NS inn NS	ing purposes) State F MCCHL-is MCCHL-is state F poposal date □ ye poposal date □ ye	1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	Machiert Cambra Machiert Cambra Machiert Cambra Machiert Cambra Machiert Cambra Machiert State F oposal date posal date Philosoft Machiert Pair well (M. pc) - Wardwall M. pc - Wardwall M. pc - North Wall M. pc - 12/91	in purposes) state F ng purposes) state F oposai date ye in hin (Lambrin MCG/L-i, man (Lab # in Lab # callecifes callecif	Christian wyw.c Christian Cambra Machiny Cambra Machiny Cambra Machiny State F poposal date poposal date po	LABOHATORY EMail: CALINCY EMail: WACKINGY Cambra MACKINGS State F poposal date provided to the
Date/Time: 12-9-6 22 Date/Time:	Date/Time:	Data/Tima:	3-5-61	Date/Time:		Date/Ime: $\frac{1}{2} \frac{1}{3} \frac{1}{16} \frac{1}{2} \frac{1}{3} \frac{1}{16}$	onice 24-483, re Date/Time: 17/3/112 81	collected From onice 24-hrs, re Date/Time: 1.7/a/112 X1	collected Ey collected From onlie 24-443, re DaterTime: 1-7 fatric X11	collected Syd	Callected Syn Callected Syn Callected From DaterTime: DaterTime: 177 alma: 811	Collected Ly Collected Ly Collected From DaterTime: DaterTime: 177 alric: 81	Loillerted From Coillerted From DaterTime: DaterTime: King	collected Sy collected Sy collected Sy contections, re patertime: 177/a/112 8:1	added by collected from patertime: 177/a/112 81	Collected From Collected From Collected From Collected From Collected From Collected From	Lab # 0613 240+188 409 20-90 120-90	Lab # 06/13 Lab # 06/13 North 10 10 10 10 10 10 10 10 10 10	State Form Requir	State Form Requir yes no Lab # 06B y 10488 400 240488 400 12 10488 400 12 10 10 10 10 10 10 10 10 10 10	State Form Requir State Form Requir Date Form Requir 1 yes I no Lab # 06B 1 yes I no 1 yes I no	Lab # 06B Lab # 070 Lab #	State Form Requir State Form Requir Uyes Ino Lab # 06B Hortsg 402 20 40 12 20 40 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	Lab # 06/3 40 Lab # 06/3 10 Lab # 06/3 10 La	Lab # 0613 Lab # 0613	under Tolge State Form Requir State Form Requir Date Tom Requir State Form Requir 1 yes 1 no Lab # 06B yr 1 yes 1 no Lab # 06B yr 1 yes 1 no 1 yes 1 no 1 yes 4 1 yes 4 1 yes 1 no 1 yes 4 1 yes 1 no 1 yes 4 1 yes 1 no 1 yes 1 no 1 yes 4 1 yes 1 no 1 yes 1 no 1 yes 1 no 1 yes 4 1 yes 1 no 1 yes 4 1 yes 1 no 1 yes 1 yes 1 no 1 yes 1 yes 1 no 1 yes 1	Fax: 413-525-6405 Email: info@conte www.contestiabs. Lab # 06B no Lab
22.30 24)	11.19 11 22:30 1-24-1	n 1,77 g			D 1991		<u>released to C</u>	released to [released to [ron the vault	in 12/8/06	in 12/104	iz 85 p on 12/85 p rom the vault	izless p izless p ron the vaul	12/8504 12/8504 12/8504 10/10/10/10/10/10/10/10/10/10/10/10/10/1	12/850 12/850 12/850 12/850 12/850 12/850	12/19/6-20 12/19/6-20 12/8-50 12/8-50 12/8-50 12/8-50 12/8-50 100 1000 1000 1000 1000 1000 1000 10	5 12 12 12 12 12 12 12 12 12 12 12 12 12	no Date Star 12/9/ Date/Tir 020/ Date/Tir 20/ 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850	quired? no Date 12/19/230 12/19/230 12/19/230 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/850 12/90 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/850 10/10 12/80 10/10 10	rona trip	Fax # Fax # Format: Format: Format: Format: Format: Format: Format: Format: Turn $12 12 & 7 \\ 0 2 & 7 \\ 0 2 & 7 \\ 0 2 & 7 \\ 0 2 & 7 \\ 0 & 7$	rona tiz 850 released to 1 released to 1 rona the value	Client F DATA Paral: Format: F	Project Client F Client F Client F DATA AFAX Fax #: Format: Format: I2 12 12 12 12 12 12 12	Telephined? Project Client F Client F Client F Client F Client F Client F Client F Client F Email: Format:	abs.com Telephy Project Client F Client F Client F Client F anno $anno annoannoannoanno annoanno annoanno annoanno annoanno anno annoannoanno anno annoanno$	idos ontestiabs.com abs.com Teleph Project Client F Client F Client F Client F Fax # Fax # Fax # Format: $12 9 & 0 \\ 12 9 & 0 \\ 12 9 & 0 \\ 12 & 0$
HUSH HUSH 24-HVD *48-Hr 72-Hr D *4-Day				D 10-Day	Urnaround "		<u>№ 1004 (ЛСС</u> 1ии	with by Dan L	UVDP	The put has a man	with by Dan L	PM IZLE	Dat McCon	Dry Log Cont	Dry Int 6:15	Dut by Dan 1 1011 by Dan 1 1011 by Dan 1 1011 by Dan 1 1011 by Dan 1	1 Date Michael	ate Sampled Time Date(Time U pr//2/9/6 $D pM / 6:75D pM / 6:75D pM / 6:75D M / 6:75D M / 6:75D M / 12/8D M / 12/8$	ate Sampled Time Stop Drime DateTime Drive DateTime Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Driz/2/264 Drive Drive Driv	ait: $972 - 4$ nat: 1 EXCEL The Sampled the Stop of the Date Time Date Time	$ \frac{\#}{111} = \frac{276}{276} - \frac{4}{4} $ $ \frac{1}{111} = \frac{276}{276} - \frac{4}{4} $ $ \frac{1}{1111} = \frac{1}{12} \frac$	TA DELIVERY (AX ATEMAIL AX ATEMAIL ait: 978 - 4 ait:	nt PO # AX ALEMAIL AX ALEMAIL $\#: \frac{Q}{Q} - \frac{Q}{Q}$ $\#: \frac{Q}{Q} - \frac{Q}$	ect # 429 nt PO # AX ALEMAIL AX ALEMAIL all: $972 - 4$ nat: D EXCEL to PAN bit 2/2014 0 P / 12/2014 D P / 12/2014 2 P / 12/2014 2 P / 12/2014	phone (18) pect # (129) ect # (129) nt PO # FA DELIVERY (AX ALEMAIL #: (129) nat: (129) prime Date Time Date T	phone (78) get # (78) get all all get all g	m $(200 + 4)$ phone (78) phone (78) phone (78) piece (78) pi
		Special Re	Data Enha		Regulation		<u>ײַנץ 0∜ שני אַנ</u> ייי Detecti	Muy Oq Dec SI	MATTEN O	Per TV-St WWW WWYD9Dec St Detecti	perty in which which a second second	perity of the States	perturn perturn Whiten o Why Oglier &	perturn perturn Whitewo Why Ogliec St	per TV-	per TV- per TV- in WATTEN o muy Office St	ne osite Gr vy v e per TV v vultation vultation v vultation vultation vultation v vultation vultation vultat	d Comp- me osite Gr v v v v v v v v v v v v v	ER me comp- ossite Gr per V V V V V V V V V V V V V	d Comp- d v v v v v v v v v v v v v v v v v v	HER RPDF d Comp- me osite osite Gr NDATEN Detecti	Cicheck one Cicheck one UWEBSIT UWEBSIT d Comp- d Comp- d V V V V V V V V V V V V V	Composite Gr d d d d d d d d d d d d d d d d d d d	L Citheck one) L CIWEBSIT UWEBSIT d Comp- EP Z PDF EP Z PDF Cosite Gr V V V V V V V V V V V V V V V V V V	Composite Compos	Comp- I Check one) I Check one) I CWEBSIT I CWEBSIT I CWEBSIT I COMP- I COMP-	(0.70) 8.77) $(0.70) 8.77)$ $(0.5) - 3.6$
		Requirements or	hancement Proj		ons?	TION LIMIT H	SPM H - High; tion Limit R	SPM H - High;	A) Please u ∂ ← be high ii SPM H - High; tion Limit R	nr 3 Ph n ∂ ← Piease u ∂ ← be high i SPM H - High tion Limit R	AT 3 Ph Please u ∂ ← be high ii SPM H - High; tion Limit R	y y y y y y y y Please u y y y he high i he high i h	√ Please u ∂ ← Please u ∂ ← be high i SPM H - High; tion Limit R	Please u ∂ € be high i SPM H - High;	$\frac{\sqrt{\frac{1}{2}\rho_{\rm Please}}}{\frac{1}{2}\rho_{\rm Please}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	SFM H - High	Grab Code 0 Code 0 Code	Arab Code Grab Code Code	Grab Code I Grab Code I Code I	Grab Code Grab Code Code	el: ITE CLIENT Grab Code I Code I COD	e): ITE CLIENT ITE CLI	el: ITE CLIENT ITE CLIENT Grab Code ITE CLIENT ITE CLIENT </td <td>e): ITE CLIENT ITE CLIENT Arab Code Code Code Code Code Code Code Code</td> <td>e: ITE CLIENT TE CLIENT Grab Code I Code Code I CO CO CO CO CO CO CO CO CO CO CO CO CO</td> <td>e): ITE CLIENT ITE CLI</td>	e): ITE CLIENT ITE CLIENT Arab Code Code Code Code Code Code Code Code	e: ITE CLIENT TE CLIENT Grab Code I Code Code I CO CO CO CO CO CO CO CO CO CO CO CO CO	e): ITE CLIENT ITE CLI
		or DL's:		(4	Requirement		n; M - Medium;	in concentratic , M - Medium;	use the followin in concentratic n; M - Medium;	use the followin in concentratic h; M - Medium;	use the followin in concentratic in M - Medium;	use the following in concentratic	use the following in concentratic	n; M - Medium;	h; M - Medium;	r; M - Medium;	Cohc. Code Y t t t n concentratic t n concentratic	r; M - Medium;	Conc. Code:	EY Cohc Cohc Cohc Cohc Cohc Cohc Cohc Cohc	EY Code Co	TEY EXAMPLE Conc. EXAMPLE Conc. Code Source	h; M - Medium;	h; M - Medium;	HEY LEY LEY LEY LEY LEY LEY LEY LEY LEY L	h; M - Medium;	LIMITH
ぼ		ie. per		B	ints		1; L - Low;	ion in Matri ; L - Low;	ion in Matri	ing codes t ion in Matri	ing codes t ion in Matri	ing codes t ion in Matri	ing codes t ion in Matri	ing codes t	ing codes t	× × ing codes t ion in Matri	X X Image of the second seco	TL-Low;	TL-Low:	ining codes t	ining codes t in Matri	TL-LOW:	YL - Low: X SVUCs (") YL - Low: X MQP Metalls, b, TCP (")	TL-Low:	TL-LOW:	TL-Low: TL-Low:	1 L-Low:
SL = sludg	U - 3011/301	c = enil/eni	DW= drink	WW= wast	GW= grour	I"Matrix Co	C - Clean; 1	C - Clean;	io let Con-Te ix/Conc. Co ix/Cenc; C - Clean;	ix/Conc. Co C - Clean;	to let Con-Tr ix/Conc. Cc C - Clean;	to let Con-Tr ix/Conc. Cc	to let Con-Tr ix/Conc. Cc	to let Con-Tr ix/Conc. Cc	to let Con-Ti ix/Conc. Cc	to let Con-Tr ix/Conc. Cc	to let Con-Ti ix/Conc. Cc	C - Clean;	C - Clean; C - Clean; C - Clean;	C - Clean; C - Clean; C - Clean;	to let Con-Tr ix/Conc. Cc Matrix Cc	C- Clean; C- Cle	C-Clean: KIPESMALYS	C- Clean: C- Cle	C- Clean: C- Cle	C- Clean: WIPESDMPEES ANALYS	C- Clean: WIPESAMPLES ANALYS
lge		olid	king water	stewater	<u>Sode:</u> undwater	•	U - Unknov	U - Unknov	Test know if Sode Box:	Test know if Sode Box:	Test know if Sode Box:	V Test know if Sode Box:	V Test know if Jode Box:	U - Unknov	Test know if bode Box:	U - Unknov	U - Unknov	U - Unknov	U - Unknov II	U - Unknow II	U-Unknow II XXX WCP Mable	U-Unknow II	U - Unknov	U - Unknov II	U-Unknow II	U-Unknow II	U-Unknow II
		S = Sulfi	M = Met	H = HCL	I = Iced	"Preser	wn **Prese	wn	f a specific : wn	f a specific : wm	f a specific :	If a specific	if a specific	if a specific	**Prese	Tra specific	···Prese	**Prese	**Prese	**Prese	**Prese	**Prese	**Prese	**Prese	**Prese	**Prese	**Prese
	dium bisutfat	fluric Acid	sthanol	۲ ۲	×	ervation Cor	ervation Co	ervation Co	sample ma	sample ma	s sample ma	s sample ma	sample ma	sample ma	sample ma	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co	ervation Co
	ite			= Na t	II NG I	des:	des:	ides:		ides: XBES	Notes: XREA		ARE 2386							225 2 1 2 2 5 10 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							