Skip to content ↓

An interdisciplinary approach to fighting climate change through clean energy solutions

Principal Research Scientist Audun Botterud tackles a range of cross-cutting problems — from energy market interactions to designing batteries — to get closer to a decarbonized power grid.
Press Inquiries

Press Contact:

Jennifer Donovan
Phone: 917-902-9174
MIT Laboratory for Information and Decision Systems
Close
Headshot of Audun Botterud
Caption:
Audun Botterud

In early 2021, the U.S. government set an ambitious goal: to decarbonize its power grid, the system that generates and transmits electricity throughout the country, by 2035. It’s an important goal in the fight against climate change, and will require a switch from current, greenhouse-gas producing energy sources (such as coal and natural gas), to predominantly renewable ones (such as wind and solar).

Getting the power grid to zero carbon will be a challenging undertaking, as Audun Botterud, a principal research scientist at the MIT Laboratory for Information and Decision Systems (LIDS) who has long been interested in the problem, knows well. It will require building lots of renewable energy generators and new infrastructure; designing better technology to capture, store, and carry electricity; creating the right regulatory and economic incentives; and more. Decarbonizing the grid also presents many computational challenges, which is where Botterud’s focus lies. Botterud has modeled different aspects of the grid — the mechanics of energy supply, demand, and storage, and electricity markets — where economic factors can have a huge effect on how quickly renewable solutions get adopted.

On again, off again

A major challenge of decarbonization is that the grid must be designed and operated to reliably meet demand. Using renewable energy sources complicates this, as wind and solar power depend on an infamously volatile system: the weather. A sunny day becomes gray and blustery, and wind turbines get a boost but solar farms go idle. This will make the grid’s energy supply variable and hard to predict. Additional resources, including batteries and backup power generators, will need to be incorporated to regulate supply. Extreme weather events, which are becoming more common with climate change, can further strain both supply and demand. Managing a renewables-driven grid will require algorithms that can minimize uncertainty in the face of constant, sometimes random fluctuations to make better predictions of supply and demand, guide how resources are added to the grid, and inform how those resources are committed and dispatched across the entire United States.

“The problem of managing supply and demand in the grid has to happen every second throughout the year, and given how much we rely on electricity in society, we need to get this right,” Botterud says. “You cannot let the reliability drop as you increase the amount of renewables, especially because I think that will lead to resistance towards adopting renewables.”

That is why Botterud feels fortunate to be working on the decarbonization problem at LIDS — even though a career here is not something he had originally planned. Botterud’s first experience with MIT came during his time as a graduate student in his home country of Norway, when he spent a year as a visiting student with what is now called the MIT Energy Initiative. He might never have returned, except that while at MIT, Botterud met his future wife, Bilge Yildiz. The pair both ended up working at the Argonne National Laboratory outside of Chicago, with Botterud focusing on challenges related to power systems and electricity markets. Then Yildiz got a faculty position at MIT, where she is a professor of nuclear and materials science and engineering. Botterud moved back to the Cambridge area with her and continued to work for Argonne remotely, but he also kept an eye on local opportunities. Eventually, a position at LIDS became available, and Botterud took it, while maintaining his connections to Argonne.

“At first glance, it may not be an obvious fit,” Botterud says. “My work is very focused on a specific application, power system challenges, and LIDS tends to be more focused on fundamental methods to use across many different application areas. However, being at LIDS, my lab [the Energy Analytics Group] has access to the most recent advances in these fundamental methods, and we can apply them to power and energy problems. Other people at LIDS are working on energy too, so there is growing momentum to address these important problems.”

Weather, space, and time

Much of Botterud’s research involves optimization, using mathematical programming to compare alternatives and find the best solution. Common computational challenges include dealing with large geographical areas that contain regions with different weather, different types and quantities of renewable energy available, and different infrastructure and consumer needs — such as the entire United States. Another challenge is the need for granular time resolution, sometimes even down to the sub-second level, to account for changes in energy supply and demand.

Often, Botterud’s group will use decomposition to solve such large problems piecemeal and then stitch together solutions. However, it’s also important to consider systems as a whole. For example, in a recent paper, Botterud’s lab looked at the effect of building new transmission lines as part of national decarbonization. They modeled solutions assuming coordination at the state, regional, or national level, and found that the more regions coordinate to build transmission infrastructure and distribute electricity, the less they will need to spend to reach zero carbon.

In other projects, Botterud uses game theory approaches to study strategic interactions in electricity markets. For example, he has designed agent-based models to analyze electricity markets. These assume each actor will make strategic decisions in their own best interest and then simulate interactions between them. Interested parties can use the models to see what would happen under different conditions and market rules, which may lead companies to make different investment decisions, or governing bodies to issue different regulations and incentives. These choices can shape how quickly the grid gets decarbonized.

Botterud is also collaborating with researchers in MIT’s chemical engineering department who are working on improving battery storage technologies. Batteries will help manage variable renewable energy supply by capturing surplus energy during periods of high generation to release during periods of insufficient generation. Botterud’s group models the sort of charge cycles that batteries are likely to experience in the power grid, so that chemical engineers in the lab can test their batteries’ abilities in more realistic scenarios. In turn, this also leads to a more realistic representation of batteries in power system optimization models.

These are only some of the problems that Botterud works on. He enjoys the challenge of tackling a spectrum of different projects, collaborating with everyone from engineers to architects to economists. He also believes that such collaboration leads to better solutions. The problems created by climate change are myriad and complex, and solving them will require researchers to cooperate and explore.

“In order to have a real impact on interdisciplinary problems like energy and climate,” Botterud says, “you need to get outside of your research sweet spot and broaden your approach.”

Related Links

Related Topics

Related Articles

More MIT News