Skip to content ↓

Pathfinder satellite paves way for constellation of tropical-storm observers

Lincoln Laboratory’s TROPICS satellites will help scientists study extreme tropical weather once all six are launched next year.
Watch Video
Press Inquiries

Press Contact:

David R. Granchelli
Phone: 781-981- 4204
MIT Lincoln Laboratory
Close
Photo of a small satellite against a white backdrop. The satellite has solar cells toward the bottom and a small boom with a gold cube at the top.
Caption:
The TROPICS Pathfinder satellite, pictured here, was launched on June 30. The satellite body measures approximately 10 cm X 10 cm X 36 cm and is identical to the six additional satellites that will be launched in the constellation in 2022. The golden cube at the top is the microwave radiometer, which measures the precipitation, temperature, and humidity inside tropical storms.
Credits:
Image: Blue Canyon Technologies

The 2020 Atlantic hurricane season was one of the most brutal on record, producing an unprecedented 30 named storms. What’s more, a record-tying 10 of those storms were characterized as rapidly intensifying — some throttling up by 100 miles per hour in under two days.

To provide a more consistent watch over Earth's tropical belt where these storms form, NASA has launched a test satellite, or pathfinder, ahead of a constellation of six weather satellites called TROPICS (Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats).

Planned for launch in 2022, the TROPICS satellites will work together to provide near-hourly microwave observations of a storm's precipitation, temperature, and humidity — a revisit time for these measurements not currently possible with other satellites.

"These storms affect a lot of people, and we expect that with the increased observations over a single storm from TROPICS, we will be able to improve forecasts, which translates to helping people get to safety sooner, protecting property, and overall enhancing the national economy," says William Blackwell, principal investigator of the TROPICS program and an associate leader of the Applied Space Systems Group at MIT Lincoln Laboratory.

Six years ago, Blackwell submitted TROPICS as a proposal to NASA's Earth Venture Instrument program and was awarded funding. The program calls for innovative, science-driven, cost-effective missions to solve pressing issues related to Earth science.

The TROPICS mission will be among the first to use a constellation of small satellites for global, rapid-revisit views of tropical storms. Since tropical cyclones and hurricanes can change rapidly as they travel across the ocean, the increased observations from the TROPICS satellites will not only advance the science of understanding storm intensity, they also may improve intensity forecasts.

"As a lifelong Floridian, I’ve seen firsthand the devastating impact that hurricanes can have on our communities. And as climate change is making hurricanes even stronger, it's more important than ever that NASA and our partners invest in missions like TROPICS to better track and understand extreme weather," says NASA Administrator Bill Nelson. "NASA’s innovation is strengthening data models that help scientists improve storm forecasting and understand the factors that feed these monster storms. TROPICS will help to do just that, and we look forward to next year’s launch of the TROPICS satellite constellation."

How a Squad of Small Satellites Will Help NASA Study Storms

The project also holds promise to boost National Oceanic and Atmospheric Administration’s steady improvements in weather and hurricane forecasts by feeding new environmental data into their numerical weather prediction models, says Frank Marks, director of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory.

After all six satellites are launched, "this new constellation will provide high frequency temperature and humidity soundings as we seek to learn how hurricanes interact with the surrounding temperature and moisture environment — key data that could improve hurricane intensity forecasts," Marks says.

A critical step to preparing for the constellation was the launch on June 30 of a pathfinder satellite, a seventh identical copy of the TROPICS smallsats. The pathfinder will enable full testing of the technology, communication systems, data processing, and data flow to application users in advance of the constellation's launch. This will allow time for adjustments to the ground system and data products, helping ensure the success of the TROPICS mission.

"The TROPICS Pathfinder satellite is similar to a screening before the opening night of a big show," says Nicholas Zorn, the pathfinder program manager from MIT Lincoln Laboratory. "Its mission is a real-world, end-to-end test, from environmental verification through integration, launch, ground communications, commissioning, calibration, operations, and science data processing. Any areas for improvement identified along the way can be reinforced before the constellation launches."

Aboard each TROPICS small satellite is an instrument called a microwave radiometer, which detects temperature, moisture, and rainfall in the atmosphere. On current weather satellites, microwave radiometers are about the size of a washing machine. On TROPICS’ small satellites the radiometers are about the size of a coffee mug.

Microwave radiometers work by detecting the thermal radiation naturally emitted by oxygen and water vapor in the air. The TROPICS instrument measures these emissions via an antenna spinning at one end of the satellite. The antenna listens in at 12 microwave channels between 90 to 205 gigahertz, where the relevant emission signals are strongest. These channels capture signals at different heights throughout the lowest layer of the atmosphere, or troposphere, where most weather we experience occurs.

Lincoln Laboratory has been working to miniaturize microwave radiometers for the last decade, spurred by the invention of CubeSats, satellites the size of a loaf of bread that are economical to launch. This work has been an ongoing collaboration between Blackwell and MIT Associate Professor Kerri Cahoy of the Department of Aeronautics and Astronautics. TROPICS builds on that team's joint 2018 success in launching the first microwave radiometer on a CubeSat to collect atmospheric profiling data. The instrument aboard the TROPICS' six satellites has been upgraded to provide improved sensitivity, resolution, and reliability and will make more targeted and rapid weather observations.

"It is amazing technology that we have proven out that allows us to maximize the science from the instrument's size factor. To pull this off has taken contributions of so many people," Blackwell says.

The TROPICS science team includes researchers from MIT Lincoln Laboratory and the MIT Department of Aeronautics and Astronautics; NASA’s Goddard Space Flight Center; NOAA Atlantic Oceanographic and Meteorological Laboratory; NOAA National Hurricane Center; NOAA National Environmental Satellite, Data, and Information Service; University of Miami; Colorado State University; Vanderbilt University; and University of Wisconsin. The University of Massachusetts Amherst, Texas A&M University, and Tufts University contributed to the technology development. Maverick Space Systems provided integration services for the Pathfinder, which was launched from SpaceX’s Transporter 2 mission. Astra Space Inc. is providing launch services for the constellation. NASA’s Launch Services Program based at Kennedy Space Center procured and managed the Tropics Pathfinder launch service.

Related Links

Related Topics

Related Articles

More MIT News