EMPA, the Swiss Federal Research Laboratory for Materials Science and Technology, awarded the Golden Mirko Roš Medal to Department of Civil and Environmental Engineering (CEE) Professor Oral Buyukozturk on May 16, during opening session of the 2011 International Symposium on Nondestructive Testing of Materials and Structures held at Istanbul Technical University. The award honors Buyukozturk’s “most valuable and sustained contributions to materials science and engineering in the domain of civil engineering, and for his outstanding research support to EMPA over the last two decades,” said Professor Urs Meier, a former director of EMPA.
“I have always had the opportunity and privilege to work in collaborative projects with EMPA’s researchers and sent them students,” Buyukozturk said. Summing up four decades of work, he said, “The basic philosophy of my research has been understanding the fundamental responses of materials and structures to loads and environmental effects such as moisture, temperature variations and chemicals, which we can predict using some powerful computational methodologies. No matter what the application area, the core research topic remains and consistently produces results and advancement in scientific knowledge and technology.”
In addition, Buyukozturk expresses great satisfaction “from developing something innovative and seeing it being used by people, and in educating young people. Teaching, research supervision and interaction with students are perhaps what I enjoy most,” he said.
After graduating from Istanbul Technical University, Buyukozturk received his PhD in 1970 from Cornell University. As a graduate student at Cornell he did original and innovative work on the basic behavior of brittle materials such as concrete and mortar, and studied how micro-cracks develop. “As a group of people with a unique research approach, we coined the terminology of micro-cracking in brittle materials such as concrete as a composite. From micro-behavior we scaled up to predict the global behavior of the material, and then went even further to structures and systems,” he said.
This work also involved one of the first applications of the then-newly developing finite element method to analyze brittle materials and structures through nonlinear constitutive relations including debonding of interfaces between dissimilar materials. “It opened a new era in the study of the deformation response of brittle materials as a particulate composite and its formulations for engineering analysis,” Buyukozturk said.
Read a news story on the CEE website
“I have always had the opportunity and privilege to work in collaborative projects with EMPA’s researchers and sent them students,” Buyukozturk said. Summing up four decades of work, he said, “The basic philosophy of my research has been understanding the fundamental responses of materials and structures to loads and environmental effects such as moisture, temperature variations and chemicals, which we can predict using some powerful computational methodologies. No matter what the application area, the core research topic remains and consistently produces results and advancement in scientific knowledge and technology.”
In addition, Buyukozturk expresses great satisfaction “from developing something innovative and seeing it being used by people, and in educating young people. Teaching, research supervision and interaction with students are perhaps what I enjoy most,” he said.
After graduating from Istanbul Technical University, Buyukozturk received his PhD in 1970 from Cornell University. As a graduate student at Cornell he did original and innovative work on the basic behavior of brittle materials such as concrete and mortar, and studied how micro-cracks develop. “As a group of people with a unique research approach, we coined the terminology of micro-cracking in brittle materials such as concrete as a composite. From micro-behavior we scaled up to predict the global behavior of the material, and then went even further to structures and systems,” he said.
This work also involved one of the first applications of the then-newly developing finite element method to analyze brittle materials and structures through nonlinear constitutive relations including debonding of interfaces between dissimilar materials. “It opened a new era in the study of the deformation response of brittle materials as a particulate composite and its formulations for engineering analysis,” Buyukozturk said.
Read a news story on the CEE website